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Chapter 1

Barycentric Coordinates

1.1 Introduction
Barycentric coordinates were first introduced by August Ferdinand Möbius (1790 - 1816) in his
book The barycentric calculus, published in 1827 (Fauvel, 1993). He began with the idea of a
weightless rod with weights attached at two distinct points, and was interested in locating the rod’s
centre of gravity. In other words, he wanted to find the point at which a fulcrum could be placed
to balance the rod (Wildberger, 2010). In his calculations, Möbius also assigned negative weights.
Although this may seem counter-intuitive, a negative weight may be considered an object which
applies an upward force, such as a balloon. In this case, notice that the centre of gravity is not
between the two attached objects.

mA mB mB 

mA 

A B
A

B

Figure 1.1

Möbius assigned coordinates to the point at which the centre of gravity, or barycentre, was lo-
cated, which reflected the ratio of weights attached to the rod. We write the barycentric coordinates
of the point at which the fulcrum is located in Figure 1 as (ma : mb). The particular location of
the fulcrum will be examined further in Section 1.3.

Möbius then extended this idea to a system of three weighted points, forming a triangle (Fauvel,
1993). Suppose the weights mA,mB and mC are placed at the corresponding vertices of triangle
ABC. Then the barycentric coordinates of the point P , the location of its centre of gravity, are
represented by the ratio of weights (mA : mB : mC).
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Figure 1.2
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If the weights in Figure 1.2 are replaced with weights that have each been increased or de-
creased by a common factor, the ratio of weights, and centre of gravity will remain the same.
Therefore, a specific point P has many sets of barycentric coordinates. For example, suppose the
weights in Figure 1.2 are assigned the following masses: mA = 2 g, mB = 3g, mC = 4 g. The
coordinates assigned to P in this case are (2 : 3 : 4). If these weights are then replaced such that
mA = 4 g, mB = 6 g, and mC = 8 g, the coordinates assigned to point P are (4 : 6 : 8). The
location of P , however, has not changed. Therefore, the barycentric coordinates of this point P
may be denoted by (λ2 : λ3 : λ4) where λ ∈ R and are said to be homogeneous.

The coordinates (u : v : w) are often normalized such that the values sum to 1, that is
u + v + w = 1 in order to provide easier calculations (Abel, 2007). To normalize coordinates
(u : v : w), simply multiply each value by 1

u+v+w
. Therefore, the normalized coordinates of

P (u : v : w) are:

1

u+ v + w
(u : v : w) =

(
u

u+ v + w
,

u

u+ v + w
,

u

u+ v + w

)
.

Normalized coordinates are often represented with commas instead of colons. Note that in the case
where u+ v + w = 0, such scaling is not possible.

1.2 Advantages
As we progress with the presentation of topics surrounding barycentric coordinates, some of the
advantages of this system of coordinates will become apparent. They include the simple expres-
sions for lines, the roles that the vertices and edges of a triangle play, and the simple forms for
common points of a triangle (Schindler & Chen, 2012).

Although the use of barycentric coordinates extends to problems of complexity beyond the
scope of the content presented here, it is worth mentioning their “extreme helpfulness for interpo-
lating discrete scalar fields, vector fields, or arbitrary multidimensional fields over irregular tessel-
lations” (Warren, 2006).



1.3 Locating the barycentre
Referring back to the weightless rods in Figure 1.1 with weights mA and mB attached at points
A and B respectively, let us determine the location of the fulcrum. If d represents the distance
between A and B, the centre of gravity is a distance of mB

mA+mB
d from A and mA

mA+mB
d from B.

For example, consider the rod depicted below with attached weights of mass 3 kg at A and 5
kg at B. If the distance between A and B is again represented by d, then the location of P is 5

8
d

from A and 3
8
d from B.

3 kg 5 kg

A BP
5/8d 3/8d

Figure 1.3

In the case where the fulcrum is not located between the weights, if mA < 0 and mA +mB > 0,
then mA

mA+mB
d < 0. Although the distance is positive, the negative value indicates the position of

B is between the fulcrum and A. This will be investigated further near the end of this section.

Extending this now to a triangle, such as the one depicted in Figure 1.2, the location of P may
not be on one of the edges of the triangle. In this case, determining the location of P involves a
few more steps. Consider the triangle below.

4 kg

5 kg

6 kg
a

c

bA C

B

P

Figure 1.4

Applying the calculations done with the rod in Figure 1.3, the locations of a, b and c can be
determined. Let the distances between vertices be represented by dAB, dBC , and dCA. For the
triangle in Figure 1.4, the point a is located 5

11
dBC from C and 5

11
dBC from B. Point b is 6

10
dCA

from A and 4
10
dCA from C, and point c is 5

9
dAB from A and 4

9
dAB from B. P is located at the

point of intersection of the lines Aa,Bb and Cc. These are the cevians of the triangle and will be
adressed in Ceva’s Theorem. The equation of a line will be also be investigated further in Chapter 2.

It should now be clear that the vertices of the reference triangle ABC define the barycentric
coordinate system, and so the coordinates of all other points P in the plane are relative to the lo-
cations of A,B and C. While the steps outlined above may be somewhat tedious to determine the



position of a single point, there are some points which are easy to locate. In the following,4ABC
will serve as the reference triangle.

Vertices:

Consider the normalized points with barycentric coordinates (1, 0, 0), (0, 1, 0), and (0, 0, 1).
They each represent an attached weight at a single vertex, and are located at that respective vertex.
More precisely, (1, 0, 0) is located at A, (0, 1, 0) is located at B, and (0, 0, 1) is located at C.

Midpoints:

Now consider the point with coordinates (1 : 1 : 0). Since the weights placed at A and B are
equal, and no weight is placed at C, the location of the barycentre is on the line passing through,
and equidistant to, A and B. In other words, it is the midpoint of AB. Similarly, (1 : 0 : 1) is the
midpoint of AC and (0 : 1 : 1) is the midpoint of BC.

Centroid:

The point (1 : 1 : 1) does not lie on an edge, nor at a vertex of the triangle. This is the barycen-
tre of a triangle with equal weights at each vertex. It is located at the point of concurrency of all
three medians of a triangle (Unger, 2010), and is known as the centroid. It is always located within
the triangle.

The coordinates of a point contain only positive values if and only if the point lies within the
triangle of reference. If one of the coordinates is zero, the point is located on one of the edges, if
two are zero it lies on a vertex, and if any coordinates are negative, the point is located exterior to
the triangle (Lovering, 2008). Figure 1.5 shows the signs of coordinates at differents locations in
reference with an arbitrary triangle.

A

B

C
(+, +, +)

(+, -, +)

(-, +, +)

(-, +, -)

(+, +, -)

(-, - ,+)

(+, -, -)

Figure 1.5



1.4 Barycentric coordinates representing area
Normalized barycentric coordinates are sometimes called areal coordinates. This is because they
are also the ratio of areas into which the triangle has been partitioned using a fourth point P (Lid-
berg, P). If we consider triangle ABC with coordinates labelled counterclockwise and point P in
the same plane, then it can be shown that the coordinates of P are(

[PBC]

[ABC]
,
[PCA]

[ABC]
,
[PAB]

[ABC]

)
where [ABC] represents the area of the triangle with vertices A,B and C (Lovering, 2011).

Figure 1.6, presented in Abel, 2007.

The area of a triangle is considered positive if the vertices are labelled counterclockwise. There-
fore, [ABC] > 0. It is not possible to calculate the area of a triangle based only on its ratio of
side lengths, however the areas of the triangles formed with the fourth point P are the product
of their determinant and the area of the reference triangle ABC (Chen, 1012). The coordinates of
the points are P (x, y, z) where x+y+z = 0, A(1, 0, 0), B(0, 1, 0) and C(0, 0, 1). Thus, we have:

[PBC] =

∣∣∣∣∣∣
x y z
0 1 0
0 0 1

∣∣∣∣∣∣ · [ABC] = x · [ABC],

[PCA] =

∣∣∣∣∣∣
x y z
0 0 1
1 0 0

∣∣∣∣∣∣ · [ABC] = y · [ABC],

[PAB] =

∣∣∣∣∣∣
x y z
1 0 0
0 1 0

∣∣∣∣∣∣ · [ABC] = z · [ABC],

which yields:

(
[PBC]

[ABC]
,
[PCA]

[ABC]
,
[PAB]

[ABC]

)
=

(
x · [ABC]
[ABC]

,
y · [ABC]
[ABC]

,
z · [ABC]
[ABC]

)
= (x, y, z).



1.5 A comparison with the Cartesian coordinate system
Consider the triangle ABC in the Cartesian plane with centre of gravity P as depicted below.
In this section Cartesian coordinates are represented with round brackets, while barycentric coor-
dinates are represented by square brackets and colons, even for normalized coordinates. This is
merely to further help in distinguishing between the two systems.

B(0,1)

A(1,0)C(0,0)

P(p,q)

E

D

Figure 1.7

The coordinates of the vertices are easy to compare. Placing weights at each vertex individ-
ually, the normalized coordinates are A[1 : 0 : 0], B[0 : 1 : 0] and C[0 : 0 : 1]. These do not,
however, shed much light on the relationship between the two systems of coordinates. To do so,
we must investigate the point P .

The slope of the line passing through points A and P is m = q−0
p−1

= q
p−1

. By substituting
the coordinates of A(1, 0) into the point-slope equation of a line, y − y1 = m(x − x1), we can
determine the equation of the line passing through A and P to be y = q

p−1
(x − 1). Since point E

is on the y-axis, substituting x = 0 into the equation yields y = q
1−p

and therefore the Cartesian
coordinates of E are (0, q

1−p
).

Since the point E is located where y = q
1−p

, the distance from C to E is q
1−p

and the length of
EB is 1 − q

1−p
= 1−p−q

1−p
. The ratio CE : EB = q

1−p
: 1−p−q

1−p
= q : 1 − p − q, and with weight

mA = 0 at A, the barycentric coordinates of E are [0 : q : 1− p− q].

Using similar steps we can determine the equation of the line passing through points B and P
to be y − 1 = 1−q

0−p
x or y = q−1

p
x + 1. Since point D is on the x-axis, substituting y = 0 into the

equation yields x = p
1−q

and thus the Cartesian coordinates of D are ( p
1−q

, 0).

The lengths of CD and DA are therefore p
1−q

and 1 − p
1−q

= 1−p−q
1−q

, respectively. The ratio
CD : DA = p

1−q
: 1−p−q

1−q
= p : 1 − p − q, and with weight mB = 0 at B, the barycentric

coordinates of D are [p : 0 : 1− p− q].

Using the equivalent coordinates of points D and E, the relationship can now be established.
Since the ratio of the first coordinate to the third coordinate remains consistent on the line BD,
and similarly the ratio of the second coordinate to the third coordinate remains consistent on the
lineAE, the Cartesian coordinates (p, q) are equivalent to barycentric coordinates [p : q : 1−p−q].



Chapter 2

Euclidean Geometry

2.1 The Equation of a Line
The equation of a line in the barycentric coordinate system contains variables of the first degree,
and a line passing through two specific points is unique up to scaling. However its similarity with
the linear equation in the Cartesian coordinate system does not extend beyond this. An arbitrary
triangle replaces the perpendicular lines that are used to structure the Cartesian system, with the
edges of the triangle acting as the axes, and the three vertices taking the role of the origin (Chen,
2012). The linear equation in the barycentric coordinate system therefore contains three variables,
even though we are still working in a two-dimensional plane. The general equation of a line in the
barycentric coordinate system is of the form `x +my + nz = 0, where `,m, n are constants, and
not all zero (Lovering, 2008).

To calculate the values of the constants `,m, n, a general equation can be constructed by ap-
plying the determinant method as done in section 1.4. Consider two arbitrary points P (ap : bp : cp)
and Q(aq : bq : cq) in the plane. In order to determine the equation of a line passing through them
and a third, arbitrary point (x : y : z) we must solve the system:

(ap)x+ (bp)y + (cp)z = 0

(aq)x+ (bq)y + (cq)z = 0

Since these points are on a line, the area of the triangle formed by these points must be 0. Therefore,
the determinant must equal 0: ∣∣∣∣∣∣

x y z
ap bp cp
aq bq cq

∣∣∣∣∣∣ = 0.

Thus the equation of the line passing through these points can be written as:

(bpcq − cpbq)x+ (cpaq − apcq)y + (apbq − bpaq)z = 0

If a line passes through a vertex, such as A, then it passes through (1, 0, 0) so we can substitute
these values of x, y, z into the formula to obtain `(1) + m(0) + n(0) = 0 which tells us that
` = 0. The equation of a line passing through A is therefore y = kz for some k ∈ R (Schindler &
Chen, 2012). Then, applying the equation above, we can determine the value of k of a line passing
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through (1, 0, 0) and (xq : yq : zq) to get −zqy + yqz = 0, which can be arranged to give:

y =
yq
zq
z

Through similar steps we can determine that the equation of a line passing through (0, 1, 0) has
m = 0, and a line passing through (0, 0, 1) has n = 0. The resulting equations are

x =
xq
zq
z and x =

xq
yq
y

respectively. The simplicity of finding the two latter equations is an example of one of the advan-
tages of working with the barycentric coordinate system.

Finally, the case where a line passes through two vertices is to be considered. Substituting
B(0, 1, 0) and C(0, 0, 1) into the equation `x +my + nz = 0 will show that m,n = 0 and there-
fore the equation of the line passing through BC is x = 0, which is consistent with the equations
for x interms of y and z stated earlier. Similar steps will verify the equation of the line through
AB is z = 0, and through AC is y = 0 (Schindler & Chen, 2012).

2.2 Ceva’s Theorem
The Mathematical Database (2012) presents Ceva’s Theorem as follows:

Given triangle ABC with points D,E, F on lines passing through BC,AC,AB respectively,
if the lines AD,BE and CF intersect at a single point P , then the product of the ratios

AF

FB
· BD
DC
· CE
EA

= 1.

Note that it is possible for the point of intersection P of the three lines to be inside, or outside,
of the triangle (Wikipedia, 2012).

A

C

E

B

D

F

P A

C

B

F

D

E

P

Figure 2.1

Proof: The application of barycentric coordinates provides an elegant proof of Ceva’s Theo-
rem. Referencing the proof provided by Schindler & Chen (Schindler & Chen, 2012), since D lies



on BC, the normalized barycentric coordinates of point D are (0, d, 1 − d) for some d ∈ R, and
d : 1− d = DC : BD. If D lies between B and C, as shown with the triangle to the left in Figure
2.1, then 0 < d < 1. However, ifD lies onBC andB is located betweenD and C, d > 1. If C lies
between D and B, then d < 0. Substituting these values into the equation of a line passing through
(0, d, 1− d) and (1, 0, 0), we get (1− d)y − dz = 0. Rearranging the terms gives us z = 1−d

d
y.

Since the point E lies on AC, the normalized coordinates of E are (1−e, 0, e) for some e ∈ R,
and e : 1− e = EA : CE. If E lies between A and C, then 0 < e < 1. If A lies between E and C,
then e < 0, and if C lies between A and E, then e > 1. The equation passing through (1− e, 0, e)
and (0, 1, 0) is −ex+ (1− e)z = 0. Rearranging the terms yields x = 1−e

e
z.

Finally, since F lies on AC, the point F has the normalized coordinates F = (f, 1 − f, 0) for
some f ∈ R, and f : 1 − f = FB : AF . 0 < f < 1 when F lies between A and B, f < 0 when
B lies between A and F , and f > 1 when A lies between B and F . Thus the line passing through
(f, 1−f, 0) and (0, 0, 1) yields the equation (1−f)x−fy = 0, which provides us with y = 1−f

f
x.

Since P lies on all three lines, we can use this system of equations to substitute for x, y, z:

x =
1− e
e

z

=
1− e
e
· 1− d

d
y

=
1− e
e
· 1− d

d
· 1− f

f
x

1 =
1− e
e
· 1− d

d
· 1− f

f

Since d : 1 − d = DC : BD, e : 1 − e = EA : CE and f : 1 − f = FB : AF , we can
substitute to obtain:

1 =
CE

EA
· BD
DC
· AF
FB

=
AF

FB
· BD
DC
· CE
EA

which is Ceva’s Theorem.



2.3 Menelaus’ Theorem
Given triangle ABC with points D,E, F on a transversal line crossing AB,BC and AC, respec-
tively, with D,E and F distinct from A,B and C, then

AE

EB
· BF
FC
· CD
DA

= −1.

As with Ceva’s Theorem, there are two possible cases:

A

C

D
E

F

A

B

C

D

E

F
B

Note that the transversal either intersects two edges of the triangle, or lies entirely exterior to the
triangle (Wikipedia, 2012).

Proof: The normalized barycentric coordinates of point D are (d, 0, 1 − d) where d ∈ R and
d : 1−d = CD : DA. The coordinates ofE are (e, 1−e, 0) where e ∈ R and e : 1−e = EB : AE,
and the coordinates of F are (0, f, 1 − f) where f ∈ R and f : 1 − f = FC : BF . (Note that in
the first case, the value of f is negative since it is located exterior to the triangle, and indicates a
negative weight at vertex B. The values of d, e and f are all negative in the second case, indicating
that at each point, the weight at one of the weighted vertices on that edge is negative.)

SinceD,E and F all lie on the same transversal, we will construct the equation of the line pass-
ing through two of those points, and then evaluate using the third point. Lets construct the equation
of the line passing through points D and E. Substituting their coordinates into the equation of a
line we get:

[(0)(0)− (1− e)(1− d)]x+ [(1− d)(e)− 0(d)]y + [d(1− e)− e(0)]z = 0

which simplifies to

−(1− e)(1− d)x+ (1− d)(e)y + d(1− e)z = 0

We can now substitute the coordinates of F = (0, f, 1− f) into this equation:

−(1− e)(1− d)(0) + (1− d)(e)(f) + d(1− e)(1− f) = 0



Simplifying and rearranging terms:

−(1− d) · e · f = d · (1− e) · (1− f)

−1 =
d · (1− e) · (1− f)

(1− d) · e · f

−1 =
d

1− d
· 1− e

e
· 1− f

f

Since d : 1− d = CD : DA, e : 1− e = EB : AE and f : 1− f = FC : BF , we can substitute
to obtain:

−1 =
CD

DA
· AE
EB
· BF
FC

which is equivalent to Menelaus’ Theorem.



Chapter 3

Applications

3.1 Gouraud Shading
Henri Gourard, a computer scientist, first presented Gouraud shading which is used in computer
graphics in 1971. It is used to create smooth lighting on polygonal surfaces without having to
calculate lighting for each pixel (xtimeline, 2012). Using the shading of a triangle as an example,
suppose a pure colour is assigned to each vertex. Using the normalized barycentric coordinates
of each point within the triangle, the ratio of colour from each vertex is applied to each pixel.
The result is a smooth transition of colour throughout the triangle. The picture below shows the
combination of green, red and blue, in a triangle (Lidberg, 2011).

3.2 Solar Chords
In astronomy, the barycentre play an important role. It is the point around which two bodies or-
biting each other rotate. In instances where one body of mass is much larger than another, the
barycentre is located within the larger mass. When the masses are similar, the barycentre is lo-
cated at a point between them.

Frederick Bailey, an astronomer, has been plotting the track of the Sun around the barycentre
of our solar system. He has discovered that the orbit matches the production of sunspots through
changes in acceleration, and has been measuring the correlation between Earth’s climate variation
and changes in distance between Earth and Sun. As a result, he has been able to present a reliable
model for forecasting climate variation, both globally and regionally (Bailey, 2012).
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