Pre-Calc 12

Geometric Sequences and Series Practice Test

Name:

/40

$t_n = ar^{n-1}$ $S_n = \frac{a(1-r)}{r}$ $S_{\infty} = \frac{a}{1-r}$	1-r	$t_n = ar^{n-1}$	$S_n = \frac{a(1-r^n)}{1-r}$	$S_{\infty} = \frac{1}{1}$
--	-----	------------------	------------------------------	----------------------------

1. Determine t_{12} of the geometric sequence $\frac{1}{6}, \frac{1}{3}, \frac{2}{3}, \dots$ [2]

$$t_{12} = \frac{1}{6}(2)^{11} = \frac{1024}{3}$$
 or $341.\overline{3}$

you don't need to write both!

2. Determine the tenth term of the geometric sequence 2187, -729, 243, ... [2]

$$\Gamma = \frac{-729}{2187} = -\frac{1}{3}$$

$$t_{10} = 2187 \left(-\frac{1}{3}\right)^9 = -\frac{2187}{19683} = -\frac{1}{9} \text{ or } -0.\overline{1}$$

3. In a geometric sequence, $t_8 = 6561$ and the common ratio is $\frac{3}{2}$. Determine the value of t_1 . [2]

$$t_{1} \left(\frac{3}{2}\right)^{7} = 6561$$

$$t_{1} = 6561 \div \left(\frac{3}{2}\right)^{7}$$

$$= 6561 \cdot \left(\frac{2}{3}\right)^{7}$$

$$= 384$$

4. Which term of the geometric sequence 3, 6, 12, ... is 786432? [2]

$$3(2)^{n-1} = 786432$$
 $\frac{1}{3}$
 $2^{n-1} = 262144$
 $2^{n-1} = 2^{18}$
 $\therefore n-1 = 18 \rightarrow n=19$

5. In a geometric sequence, $t_3 = 18$ and $t_6 = -486$. Determine the eighth term. [3]

$$18r^3 = -486$$

÷18 ÷18 $t_8 = -486(-3)^2 = -4374$
 $r^3 = -27$
 $r = -3$ *
** *only one possible answer

$$t_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1 - r}$$

6. Determine the sum of the first 10 terms of the geometric series $16 - 8 + 4 - \dots$ [2]

$$S_{10} = \frac{|6(1-(-\frac{1}{2})^{10})|}{|-(-\frac{1}{2})|}$$
= 10.65625
or $\frac{341}{32}$

7. Evaluate $\sum_{k=1}^{6} (-5)(2)^{k-1}$. [2]

$$S_6 = \frac{-5(1-2^6)}{1-2}$$
= -315

8. Determine the sum from t_5 to t_{12} of the geometric series $648 - 216 + 72 - \dots$ [2]

$$S_{12} - S_{4} = \frac{648(1-(-\frac{1}{3})^{2})}{1-(-\frac{1}{3})} - \frac{648(1-(-\frac{1}{3})^{4})}{1-(-\frac{1}{3})}$$

= 5.99908550...

 $S_7 = \frac{54(1-(-\frac{1}{3})^7)}{1-(-\frac{1}{3})}$

= 1094

or 40.518

9. Determine the sum of the terms $54 - 18 + 6 - \cdots + \frac{2}{27}$. [3]

$$54\left(-\frac{1}{3}\right)^{n-1} = \frac{2}{27}$$

$$\left(-\frac{1}{3}\right)^{n-1} = \frac{1}{729}$$

$$\left(-\frac{1}{3}\right)^{n-1} = \left(-\frac{1}{3}\right)^{6}$$

$$\therefore n-1 = 6$$

$$n = 7$$

$$S_n = \frac{a(1-r^n)}{1-r} \qquad S_\infty = \frac{a}{1-r}$$

10. Find the sum of each infinite geometric series, if possible. [3]

a)
$$45 - 30 + 20 - \dots$$

 $r = \frac{-30}{45} = -\frac{2}{3}$

b) $\frac{1}{18}, \frac{1}{12}, \frac{1}{8}, \dots$
 $r = \frac{1}{12} = \frac{3}{2} > 1$
 $r = \frac{1}{18} = \frac{18}{12} = \frac{3}{2} > 1$

So $r = \frac{45}{1 - (-\frac{2}{3})} = 27$

not possible

11. Determine the sum of the geometric series $\sum_{k=1}^{\infty} 2\left(\frac{1}{3}\right)^{k-1}$. [2]

$$S_{\infty} = \frac{2}{1 - \frac{1}{3}}$$

$$= \frac{2}{\frac{2}{3}}$$

$$= 3$$

12. The sum of an infinite geometric series is 18. If the common ratio is $-\frac{1}{3}$, determine t_1 . [2]

$$\frac{t_1}{1 - (-1/3)} = 18$$

$$\frac{t_1}{3} \cdot \frac{t_1}{4/3} = 18 \cdot \frac{t_1}{3}$$

$$t_1 = 24$$

13. Use an infinite geometric series to express $0.1\overline{32}$ as a fraction. [3]

$$0.1\overline{32} = 0.1 + 0.032 + 0.00032 + 0.0000032 + ...$$

$$= 0.1 + \sum_{k=1}^{\infty} 0.032 (0.01)^{k-1}$$

$$= 0.1 + \frac{0.032}{1-0.01}$$

$$= 0.1 + \frac{0.032}{0.99}$$

$$= \frac{99}{990} + \frac{32}{990}$$

$$= \frac{131}{990}$$

$t_n = ar^{n-1}$	$S_n = \frac{a(1-r^n)}{1-r}$	$S_{\infty} = \frac{a}{1-r}$

14. Is the series 5 + 4 + 3.2 + ... convergent, or divergent? Justify your answer. [2]

Since -1<r<1, the series is convergent.

15. A shoe store is closing and wants to sell all its shoes. At the beginning of each week, the price of all shoes is reduced by 10% of the current price. If a pair of shoes costs \$100.00 during the first week of the sale, determine the price of these shoes during the 8th week of the sale. [3]

$$t_1 = 100$$
 $t_2 = 100(0.9)$
 $t_3 = 100(0.9)^2$
The shoes are \$47.83
 $t_8 = 100(0.9)^7 = 47.83$

16. A ball is dropped from a height of 3 m. After each bounce, the ball rises to 60% of its previous height.

rise

a) To the nearest centimeter, to what height does the ball after the 4th bounce? [2]

$$t_1 = 3(0.6) = 1.8$$

$$3(0.6)^2 t_2 = 1.8(0.6)$$

$$\vdots$$

$$t_4 = 1.8(0.6)^3 = 0.3888$$
The ball rises 0.39m (or 39 cm).

b) What is the total vertical distance that the ball travels (**up and down**) before it comes to rest? Include the initial 3 m drop in your final answer. [3]

$$t_1 = 1.8 \cdot 2 = 3.6$$
; $r = 0.6$
 $3 + S_{\infty}$
 $= 3 + \frac{3.6}{1-0.6}$

The total vertical distance is 12m.

 $= 3 + \frac{3.6}{0.4}$
 $= 3 + 9$
 $= 12$