Math 10
Polynomials and Factoring Practice Test /50

Name: \qquad

1. Expand and simplify. [12]
a. $(x+8)(x+3)$
b. $\quad(3 a+10)(2 a-1)$
$=6 a^{2}-3 a+20 a-10$
$=6 a^{2}+17 a-10$
$=x^{2}+3 x+8 x+24$
$=x^{2}+11 x+24$
c. $\quad(m-12)^{2}$
$=(m-12)(m-12)$
$=m^{2}-12 m-12 m+144$
$=m^{2}-24 m+144$
d. $\quad \underset{5(n+6)(n-2)}{\curvearrowleft}$
$=(5 n+30)(n-2)$
$=5 n^{2}-10 n+30 n-60$
$=5 n^{2}+20 n-60$
e. $(2 y-5 x)(y-9 x)$
$=2 y^{2}-18 x y-5 x y+45 x^{2}$
$=2 y^{2}-23 x y+45 x^{2}$
f. $\quad(2 a+b)(a-9 b+3)$
$=2 a^{2}-18 a b+6 a+a b-9 b^{2}+3 b$
$=2 a^{2}-17 a b+6 a-9 b^{2}+3 b$
2. Factor completely. [16]
a. $\quad n^{2}+2 n+1$

$$
\begin{aligned}
& =n^{2}+1 n+1 n+1 \\
& =n(n+1)+1(n+1) \\
& =(n+1)(n+1)
\end{aligned}
$$

c. $\quad a^{2}+4 a-12$

$$
\begin{aligned}
& =a^{2}+6 a-2 a-12 \\
& =a(a+6)-2(a+6) \\
& =(a+6)(a-2)
\end{aligned}
$$

e. $x^{2}+2 x y-8 y^{2}$

$$
\begin{aligned}
& =x^{2}+4 x y-2 x y-8 y^{2} \\
& =x(x+4 y)-2 y(x+4 y) \\
& =(x+4 y)(x-2 y)
\end{aligned}
$$

g. $\quad 49 u^{2}-100 v^{2}$

$$
=(7 u+10 v)(7 u-10 v)
$$

$$
\begin{aligned}
& m^{4}+5 m^{2}-24 \\
= & m^{4}+8 m^{2}-3 m^{2}-24 \\
= & m^{2}\left(m^{2}+8\right)-3\left(m^{2}+8\right) \\
= & \left(m^{2}+8\right)\left(m^{2}-3\right)
\end{aligned}
$$

b.

$$
\begin{aligned}
& x^{2}-5 x-24 \\
= & x^{2}+3 x-8 x-24 \\
= & x(x+3)-8(x+3) \\
= & (x+3)(x-8)
\end{aligned}
$$

d.

$$
\begin{aligned}
& 3 x^{3}+12 x^{2}-15 x \\
= & 3 x\left(x^{2}+4 x-5\right) \\
= & 3 x\left[x^{2}+5 x-1 x-5\right] \\
= & 3 x[x(x+5)-1(x+5)] \\
= & 3 x(x+5)(x-1)
\end{aligned}
$$

f. $y^{2}-36$

$$
=(y+6)(y-6)
$$

h. $\quad 3 m^{2}-75$

$$
\begin{aligned}
& =3\left(m^{2}-25\right) \\
& =3(m+5)(m-5)
\end{aligned}
$$

(or use substitution)

$$
M^{2}+5 M-24
$$

3. Determine the binomials that represent the length and width of the rectangle. Then determine the dimensions if x represents 10 cm . [4]
Area is
$x^{2}+7 x-8$

$$
A=(x+8)(x-1)
$$

$$
\text { length }=x+8 \quad \text { (or vice versa) }
$$

$$
\text { width }=x-1
$$

$10+8=18$
$10-1=9$
The dimensions are 18 cm by 9 cm .
4. a) Find an algebraic expression for the area of the shaded region. Both shapes are squares. [2]

5. Write an algebraic expression to represent the area of the figure. Expand and simplify. [4]

$$
\begin{aligned}
A & =3(2 x)+x(x+8) \\
& =6 x+x^{2}+8 x \\
& =x^{2}+14 x
\end{aligned}
$$

6. Determine all values of b so that $x^{2}+b x+18$ can be factored. [3]

$$
\begin{aligned}
18 & =1 \times 18 \rightarrow 1+18=19 & & -1+(-18)=-19 \\
& =2 \times 9 \rightarrow 2+9=11 & & -2+(-9)=-11 \\
& =3 \times 6 \rightarrow 3+6=9 & & -3+(-6)=-9
\end{aligned}
$$

7. Determine three values of c so that $x^{2}-14 x+c$ can be factored. [3]

$$
\begin{aligned}
-14 & =-13-1 \rightarrow-13 \times-1=13 \\
& =-15+1 \quad \rightarrow \quad-15 \times 1=-15 \\
& =-10-4 \rightarrow-10 \times-4=40 \\
& c=-15,13,40
\end{aligned}
$$

Communication

Criteria	never	sometimes	always
Proper use of operation symbols, equal signs, etc.	0	1	2
Solutions are clear and well organized.	0	1	2

