Practice Test: Polynomials

PC 12
Polynomial Expressions \& Functions Practice Test
Name: \qquad 134
3. Using the Remainder Theorem, determine the remainder when $x^{3}+7 x^{2}+2 x-5$ is divided by $x+7$.

$$
(-7)^{3}+7(-7)^{2}+2(-7)-5=-19
$$

The remainder is -19 .

4. What are possible factors of the polynomial function $f(x)=x^{4}-3 x^{3}-8 x^{2}+12 x+16$?

$$
x \pm 1, x \pm 2, x \pm 4, x \pm 8, x \pm 16
$$

5. Fully factor the polynomial function $f(x)=x^{4}-3 x^{3}-8 x^{2}+12 x+16$.

$$
\begin{aligned}
& f(1)=(1)^{4}-3(1)^{3}-8(1)^{2}+12(1)+16 \neq 0 \\
& f(-1)=(-1)^{4}-3(-1)^{3}-8(-1)^{2}+12(-1)+16=0 \rightarrow x+1 \text { is a factor } \\
& \left.1 \begin{array}{rrrr}
1 & -3 & -8 & 12 \\
1 & 16 \\
1 & -4 & -4 & 16 \\
1 & -4 & -4 & 16
\end{array}\right) \rightarrow(x+1)\left(x^{3}-4 x^{2}-4 x+16\right)
\end{aligned}
$$

$$
\rightarrow \text { continue factoring }
$$

$$
f(2)=(2)^{4}-3(2)^{3}-8(2)^{2}+12(2)+16=0 \rightarrow x-2 \text { is a factor }
$$

$$
-2 \begin{array}{rrrr}
1 & -4 & -4 & 16 \\
& -2 & 4 & 16 \\
1 & -2 & -8 & 0
\end{array} \rightarrow(x+1)(x-2)\left(x^{2}-2 x-8\right)
$$

$$
f(x)=(x+1)(x-2)(x+2)(x-4)
$$

$$
\begin{aligned}
& \left.x+2 \begin{array}{l}
\frac{2 x^{2}+x-6}{2 x^{3}+5 x^{2}-4 x-5} \\
\frac{2 x^{3}+4 x^{2}}{x^{2}}-4 x
\end{array}\right\} \text { marks }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x^{2}+2 x}{-6 x-5} \\
& \frac{-6 x-12}{7} \\
& \kappa^{1 \text { mark }} y \\
& 2 x^{3}+5 x^{2}-4 x-5=(x+2)\left(2 x^{2}+x-6\right)+7 \quad x^{2}-15 x+2 x^{4}+8=(x-3)\left(2 x^{3}+6 x^{2}+19 x+42\right)+134
\end{aligned}
$$

6. What value of a will ensure $x+3$ is a factor of $a x^{3}-2 x^{2}+x-6$? If the remainder is 7 , what is a ?

$$
\begin{aligned}
a(-3)^{3}-2(-3)^{2}+(-3)-6 & =0 \\
-27 a-18-3 & =0 \\
-27 a-27 & =0 \\
-27 a & =27 \\
a & =\frac{27}{27}=-1
\end{aligned}
$$

$$
\begin{aligned}
-27 a-18-3-6 & =7 \\
-27 a-27 & =7 \\
-27 a & =34 \\
a & =-\frac{34}{27}
\end{aligned}
$$

7. State the following characteristics of the polynomial function $\left.f(x)=-(x+1)^{3} x-1\right)^{2}(x-3)$ and then sketch the function.
degree: $\mathbf{6}$ (add exponents) sketch $f(x)$:
x-intercepts: $x=-1,1,3$
y-intercept: $f(0)=3$

$$
-(0+1)^{3}(0-1)^{2}(0-3)
$$

sign of leading coefficient: negative
end behaviours: as $x \rightarrow \infty, y \rightarrow-\infty$

$$
\text { as } x \rightarrow-\infty, y \rightarrow-\infty
$$

8. Write a possible equation for a quintic function with zeros -5 and 4 of multiplicity 2 , a zero 3 of multiplicity 1 , and negative leading coefficient. Leave your answer in factored form.

$$
f(x)=-(x+5)^{2}(x-4)^{2}(x-3)
$$

9. The height of a rectangular prism is 8 cm more than its width, and the depth is 3 cm less than its width. The volume is $1000 \mathrm{~cm}^{3}$ more than the sum of its dimensions. Write an equation to determine the value of the width. Do not solve this problem!

$$
\begin{aligned}
& \text { width: } x \\
& \text { height: } x+8 \\
& \text { depth: } x-3
\end{aligned}
$$

$$
\begin{aligned}
\text { sum }=x+x+8+x-3 & =3 x+5 \\
x(x+8)(x-3) & =3 x+5+1000 \\
x(x+8)(x-3) & =3 x+1005
\end{aligned}
$$

10. A piece of cardboard 20 cm wide and 30 cm long is used to make a box with no lid. Equal squares of side length $x \mathrm{~cm}$ are cut from the corners and the sides are folded up. Write a polynomial function to represent the volume, V , of the box in terms of x and state the restrictions on x.

$V(x)=x(20-2 x)(30-2 x)$
$0<x<10$
