Practice Test: Factorization and Exponents

FMP10 \qquad

1. Using a tree diagram, determine the prime factorization of 1080. [2]

2. Determine the greatest common factor (GCF) of each set of numbers. [4]
a) 36 and 54
b) 24,84 , and 108

$G C F=2 \cdot 3^{2}=18$

84
108
,

$$
G C F=2^{2} \cdot 3=12
$$

3. Determine the lowest common multiple (LCM) of each set of numbers. [4]
a) 15 and 21
b) 12,18 , and 44

$$
\text { LCM }=2^{2} \cdot 3^{2} \cdot 11=396
$$

4. Use prime factorization to determine if 3375 is a perfect square, a perfect cube, neither, or both. Explain how you know. (Hint: What is the exponent of each prime factor?) [2]

$3375=3^{3} .5^{3}=(3 \cdot 5)^{3}$
3375 is a perfect cube since each exponent is divisible by 3 .
$2^{6} \cdot 7^{6} \rightarrow\left(2^{3} \cdot 7^{3}\right)^{2} \therefore$ perfect square $\rightarrow\left(2^{2} \cdot 7^{2}\right)^{3} \therefore$ perfect cube
5. Use prime factorization to determine the square root of 576. [2]

6. Write as a single power (if applicable), and then evaluate. [4]
a) $(-2)^{2} \times(-2)^{3}=(-2)^{5}$
b) $3^{8} \div 3^{4}=3^{4}$
c) $-7^{0}=-1$
d) $\left(10^{2}\right)^{4}=10^{8}$
$=-32$
$=81$
$=100000000$
7. Use the exponent laws to simplify. [5]
a) $x^{8} \times x^{5}=\chi^{13}$
b) $a^{12} \div a^{3}=a^{9}$
c) $(-4 y)^{2}=16 y^{2}$
d) $\left(z^{3}\right)^{6}=z^{18}$
e) $p^{0}=1$
8. Simplify. [8]
a) $-6 a^{4} \times a^{5} \times-3 a=18 a^{10}$
b) $\underset{\left(-4 n^{2} t^{7}\right)^{3}}{\uparrow}=-64 n^{6} t^{21}$
c) $\frac{-18 c^{4}}{-9 c}=2 C^{3}$ $(-4)^{3}$
d) $\left(5 x^{4} y^{2}\right) \div\left(x^{3} y^{2}\right)=5 x y^{0}$ $=5 x$
e) $\frac{\overbrace{}^{2}\left(p^{2} q r^{2}\right)^{5}}{3\left(p^{5} q^{2} r^{5}\right)}=\frac{15 p^{10} q^{5} r^{10}}{3 p^{5} q^{2} r^{5}}$
$=5 p^{5} q^{3} r^{5}$
f) $\left(\frac{5 y^{4} \times 4 x^{8}}{10 x^{5}}\right)^{4}=\left(\frac{20 x^{8} y^{4}}{10 x^{5}}\right)^{4}$
$=\left(2 x^{3} y^{4}\right)^{4}$
$=16 x^{12} y^{16}$
9. Simplify each expression, using only positive exponents. [6]
a) $x^{-4}=\frac{1}{x^{4}}$
b) $\left(\frac{k}{2}\right)^{-3}=\left(\frac{2}{k}\right)^{3}=\frac{8}{k^{3}}$
c) $5\left[n^{-3}\right]=5 \cdot \frac{1}{n^{3}}=\frac{5}{n^{3}}$
d) $(-6 z)^{-2}=\frac{1}{(-6 z)^{2}}=\frac{1}{36 z^{2}}$ $(5 n)^{-3}=\frac{1}{(5 n)^{3}}$
10. Simplify each expression, using only positive exponents. [7]
a) $a^{-6} a^{-4}$
b) $\begin{gathered}\downarrow^{=1} \\ \left(-3 x^{-5} y^{0} z^{4}\right)^{-4}\end{gathered}$
c) $\left(\frac{16 x^{3}}{8 x y^{-2}}\right)^{-2}$
d) $\frac{{ }^{16}}{1644 a^{3} b^{2}} \frac{2}{4 a^{-2} b^{-2}} \times \frac{{ }^{2} a^{-3}}{-1 b^{-2}}$
$=a^{-10}$
$=\frac{1}{\left(-3 x^{-5} z^{4}\right)^{4}}$
$=\left(\frac{2 x^{2}}{y^{-2}}\right)^{-2}$
$=16 a^{5} b^{4} x-\frac{2 a^{-3}}{b^{-2}}$
$=\frac{1}{81 x^{-20} z^{16}}$
$=\left(2 x^{2} y^{2}\right)^{-2}$
$=16 a^{5} b^{4} \times-\frac{2 b^{2}}{a^{3}}$
$=\frac{x^{20}}{81 z^{16}}$
$=\frac{1}{\left(2 x^{2} y^{2}\right)^{2}}$
$=\frac{-32 a^{5} b^{6}}{a^{3}}$
$=\frac{1}{4 x^{4} y^{4}}$
$=-32 a^{2} b^{6}$

$$
=\overline{4 x^{4} y^{4}}
$$

