Knowledge	R	Level 1	Level 2	Level 3	Level 4
Able to use the quadratic		Limited success	Some success	Considerable success	A high degree of
formula to find zeros.				2.0	success

1. Use the quadratic formula to solve each equation.

a)
$$x^{2}-2x-18=0$$

$$x = \frac{2 \pm \sqrt{(-2)^{2}-4(1)(-18)}}{2(1)}$$

$$\pm \frac{2 \pm \sqrt{4}+72}{2}$$

$$= \frac{2 \pm \sqrt{76}}{2}$$

$$= -3.36, 5.36$$

c)
$$-3x^2 + 13x + 10 = 0$$

$$\chi = \frac{-13 \pm \sqrt{13^2 - 4(-3)(10)}}{2(-3)}$$

$$= \frac{-13 \pm \sqrt{169 + 120}}{-6}$$

$$= \frac{-13 \pm \sqrt{289}}{-6}$$

$$= \frac{-13 \pm 17}{-6}$$

$$= -\frac{2}{3} + 25$$

b)
$$2x^2 + x = -3$$

 $2x^2 + x + 3 = 0$
 $x = \frac{-1 \pm \sqrt{1^2 - 4(2)(3)}}{2(2)}$
 $= \frac{-1 \pm \sqrt{-23}}{4}$
no solution

d)
$$x^2 - 60 = 0$$

 $\chi = \frac{0 \pm \sqrt{0^2 - 4(1)(-60)}}{2(1)}$
 $= \frac{\pm \sqrt{2+0}}{2}$
 $= \pm 7.75$

Knowledge	R	Level 1	Level 2	Level 3	Level 4
Able to use the discriminant to		Limited success	Some success	Considerable	A high degree of
determine the number of zeros.				success	success

2. Determine the number of zeros of each parabola.

a)
$$f(x) = x^2 - 6x + 10$$

$$(-6)^2 - 4(1)(0)$$

= 36 - 40
= -4

no zeros

c)
$$g(x) = 3x^2 + 4x$$

b)
$$k(x) = -2x^2 + 5x - 1$$

two zeros

d)
$$h(x) = x^2 - 8x + 16$$

Knowledge	R	Level 1	Level 2	Level 3	Level 4
Able to convert quadratic functions		Limited success	Some success	Considerable	A high degree of
in standard form to vertex form.				success	success

3. Write each function in vertex form.

a)
$$f(x) = x^2 - 10x + 8$$

= $(x^2 - 10x + 25) + 8 - 25$
= $(x-5)^2 - 17$

$$\frac{-10}{2} = -5$$

$$(-5)^2 = 25$$

c)
$$g(x) = -3x^2 + 18x - 4$$

= $-3(x^2 - 6x + 9) - 4 + 27$
= $-3(x - 3)^2 + 23$

$$\frac{-6}{2} = -3$$
 $(-3)^2 = 9$

b
$$k(x) = 2x^2 + 24x - 5$$

= $2(x^2 + 12x + 36) - 5 - 72$
= $2(x + 6)^2 - 77$
 $\frac{12}{2} = 6$
 $6^2 = 36$

d)
$$h(x) = x^2 - 3x + 1$$

$$= \left(x^2 - 3x + \frac{9}{4}\right) + 1 - \frac{9}{4}$$

$$= \left(x - \frac{3}{2}\right)^2 - \frac{5}{4}$$

4. State the vertex of each function in question 3.

a)
$$(5,-17)$$
 b) $(-6,-77)$ c) $(3,23)$ d) $(\frac{3}{2},-\frac{5}{4})$

Communication	R	Level 1	Level 2	Level 3	Level 4
Use of vocabulary		Uses vocabulary with	Uses vocabulary with	Uses vocabulary with	Uses vocabulary with a
		limited effectiveness	some effectiveness	considerable	high degree of
117 117 118		152 1 STR 2000	10/-17951	effectiveness	effectiveness

5. Explain how you would determine the number of zeros of the following quadratic functions.

a)
$$ax^2 + bx + c = 0$$

o if
$$b^2$$
-4ac >0 then 2 zeros
o if b^2 -4ac =0 then 1 zero
o if b^2 -4ac <0 then no zeros

b)
$$y = a(x - h)^2 + k$$

Application	R	Level 1	Level 2	Level 3	Level 4
Sketch graph of quadratic function in standard form.		Solution has minor errors. Sketch corresponds to errors. At least one of domain and range corresponds to solution.	Minor error results in incorrect identification of vertex. Graph corresponds to the error. Domain and range correspond to the error.	Vertex is identified accurately and graph is plotted accurately. Domain and range are correct.	Vertex is identified accurately and graph is plotted accurately. Another point is identified accurately on the sketch. Domain and range are correct.

6. Find the domain and range of the quadratic function $f(x) = x^2 - 6x + 4$. Graph the function below.

$$f(x) = (x^2 - 6x + 9) + 4 - 9$$

$$= (x - 3)^2 - 5$$

$$= (x - 3)^2 - 5$$

$$= (-3)^2 = 9$$

$$\Rightarrow \text{ Vertex} : (3, -5)$$

TIPS	R	Level 1	Level 2	Level 3	Level 4
Solves problems involving	dies	Applies the problem	Applies the problem	Applies the problem	Applies the problem
quadratic functions.		solving process with	solving process with	solving process with	solving process with
a see a contract of the		limited skill.	some skill.	considerable skill.	great skill.

- 7. The School Council sells sweatshirts to raise funds. The students sell 400 sweatshirts a year at a cost of \$35 each. They are planning to change the price to generate more revenue. A survey shows that for every \$2 price decrease, they can sell an additional 20 sweatshirts.
- a) What is the maximum revenue they can generate?

Revenue = price
$$X \# sold$$

= $(35-2n)(400+20n)$

Method 1:

$$R = (35-2n)(400+20n)$$

= $14000 + 700n - 800n - 40n^2$
= $-40n^2 - 100n + 14000$
= $-40(n^2 + 2.5n + 1.5625) + 14000 + 62.5$
= $-40(n + 1.25)^2 + 14062.5$
The maximum revenue is \$14062.50.

b) What price will maximize revenue?

c) How many sweatshirts will they sell at this price?