Math 10

Solving Systems of Linear Equations Algebraically **Elimination Method: Part II**

Consider the following system:

$$2x + 4y = 9$$
 ($x + 3y = -1$) ***2**

Since neither variable has the same coefficient in both equations, we first need to multiply one (or both) equations. Then follow the steps from the previous lesson.

$$2x + 4y = 9$$

$$2x + 6y = -2$$

$$-2y = 11$$

$$y = -\frac{11}{2}$$

$$2x + 4(-\frac{11}{2}) = 9$$

$$2x - 22 = 9$$

$$+22 + 22$$

$$2x = 31$$

$$x = \frac{31}{2}$$
Solution: $(\frac{31}{2}, -\frac{11}{2})$

Solve each system of linear equations by elimination. Verify your answer.

a)
$$(-3x+7y=-16)$$
 *3
 $-9x+5y=16$
 \bigcirc $-4x+21y$ *-48

 $-16y$ * 64

 \div -16

 \div -16

 $-3x+7(-4)$ *= -16

 $-3x-28$ *= -16

 $+28$ *= -28

 $-3x$ *= 12

 x *= -4

Solution: $(-4,-4)$

check:

① LS = -3(-4) +7(-4)

= 12 - 28

= -16

= RS

= 28

Assignment: handout

b)
$$(x+7y=-14) \times 2$$

 $-4x-14y=28$
2x+Hy=-28
-2x = 0
 $x = 0$
0+7y=-14
 $y = -2$
Solution: (0,-2)
check:
(1) LS = 0+7(-2)
= 0+-14
= -14
= RS
(2) LS = -4(0)-14(-2)
= 0+28
= 28

- RS