8.5b Solving Systems by Elimination: Part II

Math 10

Solving Systems of Linear Equations Algebraically Elimination Method: Part II

Consider the following system:

$$
\begin{aligned}
2 x+4 y & =9 \\
(x+3 y & =-1) \times 2
\end{aligned}
$$

Since neither variable has the same coefficient in both equations, we first need to multiply one (or both) equations. Then follow the steps from the previous lesson.

$$
\begin{aligned}
2 x+4 y & =9 \\
2 x+6 y & =-2 \\
\hline-2 y & =11 \\
y & =-\frac{11}{2} \\
2 x+4\left(-\frac{11}{2}\right) & =9 \\
2 x-22 & =9 \\
+22 & +22 \\
2 x & =31 \\
x & =\frac{31}{2}
\end{aligned}
$$

Solution: $\left(\frac{31}{2},-\frac{11}{2}\right)$
Solve each system of linear equations by elimination. Verify your answer.
a) $(-3 x+7 y=-16) \times 3$

$$
-9 x+5 y=16
$$

$-9 x+21 y=-48$
$-16 y=64$
$\div-16 \div-16$
$y=-4$
$-3 x+7(-4)=-16$
$-3 x-28=-16$
$+28+28$
$-3 x=12$
$x=-4$
solution: $(-4,-4)$
check:
(1) $L S=-3(-4)+7(-4)$
(2) $L S=-9(-4)+5(-4)$
$=12-28$
$=-16$
$=36-20$
$=16$
$=$ RS $=$ RS
b) $\left.\begin{array}{r}x+7 y=-14 \\ -4 x-14 y=28\end{array}\right) \times 2$
(1) $\begin{aligned} 2 x+14 y & =-28 \\ -2 x & =0 \\ x & =0\end{aligned}$ $0+7 y=-14$
$y=-2$
Solution: $(0,-2)$
check:
(1) $L S=0+7(-2)$
$=0+-14$
$=-14$
= RS
(2) $L S=-4(0)-14(-2)$
$=0+28$
$=28$
= RS
Assignment: handout

