When Carmen visited Vancouver, she had to decide whether it was worth it to pay \$3 per transit ticket, or buy a Compass card for \$6 and pay \$2.40 per ticket. To help her make her decision, she calculated the number of times she would need to buy a ticket for the Compass card to pay for itself. What equation would help her determine the answer?

$$x = number of tickets$$
 $y = cost$

Cost without Compass card: $y = 3x$
Cost with Compass card: $y = 6 + 2.4x$

$$3x = 6 + 2.4x$$

$$-2.4x - 2.4x$$

$$0.6x = 6$$

$$\div 0.6 \div 0.6$$

$$x = 10$$

Carmen should get the Compass card if she thinks She will use transit more than 10 times.

A visual representation of this scenario shows an alternate way to determine the answer. Graph each equation above. What do you notice when x = 10?

y=3x y=2.4x+6

Cost (\$)

Vancouver Transit

Number of Tickets

<u> </u>	y = 2.4x+6
0	6 +
ı	8.4
2	10.8
3	13.2
4	15.6
5	18 ←
6	20.4
7	22.8
8	25.2
9	27.6
10	30 ←
11	32.4

Identify the point of intersection of each system of linear equations by graphing.

a)
$$2x + y = 2 \rightarrow y = -2x + 2$$

 $x - y = 7$
 $y = x - 7$

The solution is (3,-4).

The solution is (3,-2).

The solution can be verified by substituting the values into each equation and showing the left side is equal to the right side.

Verify the solution in part a).

$$2x + y = 2$$
 $x - y = 7$
 $2(3) + (-4)$ $3 - (-4)$
 $6 - 4 = 2$ $3 + 4 = 7$

Suppose a mistake had been made when the lines were drawn in part b) and the answer had been (3, -1). Verify the solution.

$$x-3y = 9$$
 $2x+y=4$
 $3-3(-1)$ $2(3)+-1$
 $3+3 \neq 9$ $6-1 \neq 4$

Assignment: handout