Dividing Polynomials by Monomials

Dividing Polynomials by Monomials

The term quotient refers to the answer when dividing two expressions.

Example: Determine each quotient.
a) $\frac{9 x+12}{3}$
b) $\frac{2 x^{2}-4 x}{-2 x}$
C) $\frac{12 y^{2}+28 y}{4 y}$
d) $\frac{12 k^{2}+8 k-5}{4}$
$=\frac{9 x}{3}+\frac{12}{3}$
$=\frac{2 x^{2}}{-2 x}-\frac{4 x}{-2 x}$
$=\frac{12 y^{2}}{4 y}+\frac{28 y}{4 y}$
$=\frac{12 k^{2}}{4}+\frac{8 k}{4}-\frac{5}{4}$
$=3 x+4$
$=-x \quad--2$
$=3 y+7$
$=3 k^{2}+2 k-\frac{5}{4}$
$=-x+2$

Try these questions yourself. Determine each quotient.
a) $\frac{15 x-10}{5}$
b) $\frac{14 m^{2}+8 m}{-2 m}$
C) $\frac{6 k^{2}+12 k+8}{3}$
d) $\frac{2.8 y^{2}+1.2 y-1.6}{4}$
$=3 x-2$
$=-7 m-4$
$=2 k^{2}+4 k+\frac{8}{3}$

$$
\begin{aligned}
& =\frac{2.8 y^{2}}{4}+\frac{1.2 y}{4}-\frac{1.6}{4} \\
& =0.7 y^{2}+0.3 y-0.4
\end{aligned}
$$

A business sells an advertising banner where the area of the banner is $3 x^{2}+6 x$ and the length is $3 x$.
a) What algebraic expression represents the height of the banner?

$$
\begin{array}{rlr}
\text { height }=\frac{\text { area }}{\text { length }} & =\frac{3 x^{2}+6 x}{3 x} \quad \begin{aligned}
& \text { The height of the } \\
&=\frac{3 x^{2}}{3 x}+\frac{6 x}{3 x} \\
&=x+2
\end{aligned} \quad \begin{array}{l}
\text { banner is } x+2 .
\end{array} \\
& =x+2
\end{array}
$$

b) Calculate the area and height of a banner when the length is 120 cm .

$$
\begin{array}{rlrl}
\text { length }=\frac{3 x}{3} & =\frac{120}{3} & \text { area } & =\text { length } \times \text { height } \\
& =40 \mathrm{~cm} & & \\
& =5040 \times 42 \\
& =120 \mathrm{~cm}^{2}
\end{array}
$$

What is the ratio of the surface area to the radius of the cylinder? Write the ratio in simplest form.

$$
\begin{aligned}
\text { surface area } & =2 \text { circles }+ \text { rectangle } \\
& =2 \pi r^{2}+2 \pi r h
\end{aligned}
$$

ratio: $\frac{2 \pi r^{2}+2 \pi r h}{r}$

$$
\begin{aligned}
& =\frac{2 \pi r^{r}}{r}+\frac{2 \pi r h}{r} \\
& =2 \pi r+2 \pi h
\end{aligned}
$$

Assignment: p. 276 \#8, 11 - 13

Assignment: p. 276 \#8, 11 - 13

