7.2 Solving Trigonometric Equations Algebraically

FOCUS Use an algebraic method to solve first- and second-degree trigonometric equations.

Construct Understanding

$$
\begin{aligned}
& \text { Without graphing, solve the equation } 4 \cos x+3=7 \cos x+2 \\
& \text { for } 0 \leq x<2 \pi \text {. } \\
& \text { Check the solution graphically. }
\end{aligned}
$$

$$
\text { 8 } \begin{aligned}
& 4 \cos x+3 \\
&-7 \cos x=7 \cos x+2 \\
&-7 \cos x
\end{aligned}
$$

$-7 \cos x \quad-7 \cos x$

$-3 \cos x$	$=-1$	
$\cos x$	$=\frac{1}{3}$	
x	$=\cos ^{-1}\left(\frac{1}{3}\right)$	个

$$
2 \pi-1.23 \doteq 5.05
$$

$$
x=1.23,5.05
$$

To solve a first-degree trigonometric equation, isolate the trigonometric
function to reduce the equation to the form $\sin x=a, \cos x=a$, or
$\tan x=a$, where a is a constant. Some of these equations have exact
numerical solutions. In these cases, the solution is a multiple of $\frac{\pi}{6}$ or $\frac{\pi}{4}$.
Consider solving this equation for $0 \leq x<2 \pi$: Use the completed table
$2 \cos x+1=0 \quad$ Isolate $\cos x . \quad$ in Chapter 6, page 476,

$$
\begin{aligned}
2 \cos x & =-1 \\
\cos x & =-\frac{1}{2}
\end{aligned}
$$

to identify the exact angle.

The cosine of an angle is negative when its terminal arm lies in Quadrant 2 or 3.
The reference angle is: $\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}$
In Quadrant 2, x is: $\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$
In Quadrant 3, x is: $\pi+\frac{\pi}{3}=\frac{4 \pi}{3}$
So, the roots are: $x=\frac{2 \pi}{3}$ and $x=\frac{4 \pi}{3}$

The graph of $y=2 \cos x+1$ has period 2π.

So, the general solution of the equation $2 \cos x+1=0$ is:
$x=\frac{2 \pi}{3}+2 \pi k$ or $x=\frac{4 \pi}{3}+2 \pi k$, where $k \in \mathbb{Z}$

THINK FURTHER

What are the roots of $2 \cos x+1=0$ over the domain $-2 \pi \leq x<0$?
θ

Example 1 Determining the Exact Roots of a

 First-Degree Trigonometric Equation
Check Your Understanding

1. a) Use algebra to solve the equation $7+2 \sin x=$ $4 \sin x+5$ for
$-2 \pi-360<x \leq 0^{k}$, then write the general solution.
b) Use algebra to determine the general solution of the equation $\cos 3 x=-1$ over the set of real numbers, then list the roots in the domain $-2 \pi \leq x<0$.
a) $7+2 \sin x=4 \sin x+5$

$$
-2 \sin x=-2
$$

$$
\sin x=1
$$

$$
x=\frac{\pi}{2}
$$

* but $-2 \pi<x \leq 0$ so subtract 2π
$\frac{\pi}{2}-2 \pi=-\frac{3 \pi}{2}$
general solution: $x=-\frac{3 \pi}{2}+2 \pi n$ where $n \in \mathbb{Z}$

$$
\text { b) } \begin{array}{rlrl}
\cos 3 x & =-1 & \cos x & =-1 \\
3 x & =\pi & x & =\pi \\
x & =\frac{\pi}{3} &
\end{array}
$$

$\cos 3 x$ has a period of $\frac{2 \pi}{3}$
\therefore other solutions in $0 \leq x<2 \pi$ are $\frac{\pi}{3}+\frac{2 \pi}{3}=\frac{3 \pi}{3}=\pi$ $\pi+\frac{2 \pi}{3}=\frac{5 \pi}{3}$
general solution: $x=\frac{\pi}{3}+\frac{2 \pi}{3} n$ where $n \in \mathbb{Z}$

Try \#2,4,7
\#2 $\sin x= \pm \frac{1}{2} \quad \tan x= \pm 1,0$
$\sin x= \pm \frac{\sqrt{3}}{2} \quad \tan x= \pm \frac{1}{\sqrt{3}}$
$\sin x= \pm \frac{1}{\sqrt{2}}$ $\tan x= \pm \sqrt{3}$
$\sin x=0, \pm 1$
(same for cosine)
a) Use algebra to solve the equation $\sqrt{2} \sin x-3=-2$ for $-360^{\circ}<x \leq 0^{\circ}$, then write the general solution.
b) Use algebra to determine the general solution of the equation $\cos 3 x=\frac{1}{2}$ over the set of real numbers, then list the roots in the domain $-\pi \leq x<\pi$.

SOLUTION

a) $\sqrt{2} \sin x-3=-2 \quad$ Solve for $\sin x$.

$$
\sqrt{2} \sin x=1
$$

$$
\sin x=\frac{1}{\sqrt{2}}
$$

Since $\sin x$ is positive, the terminal arm of angle x lies in Quadrant 1 or 2.
The reference angle is: $\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=45^{\circ}$
In Quadrant $1, x=-360^{\circ}+45^{\circ}$

$$
x=-315^{\circ}
$$

In Quadrant $2, x=-180^{\circ}-45^{\circ}$

$$
x=-225^{\circ}
$$

The roots are: $x=-315^{\circ}$ and
$x=-225^{\circ}$
The period of $\sin x$ is 360°, so the general solution is:

$x=-315^{\circ}+k 360^{\circ}, k \in \mathbb{Z}$
or $x=-225^{\circ}+k 360^{\circ}, k \in \overline{\mathcal{E}}$
b) $\cos 3 x=\frac{1}{2}$

Since $\cos 3 x$ is negative, the terminal arm of angle $3 x$ lies in
Quadrant 2 or 3 .
The reference angle for angle $3 x$ is: $\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}$
In Quadrant 2:
A solution is:
$3 x=\pi-\frac{\pi}{3}$
$3 x=\frac{2 \pi}{3}$
$x=\frac{2 \pi}{9}$
In Quadrant 3:
A solution is:
$3 x=\pi+\frac{\pi}{3}$
$3 x=\frac{4 \pi}{3}$
$x=\frac{4 \pi}{9}$

For angle $3 x$

The period of $\cos 3 x$ is $\frac{2 \pi}{3}$, so the general solution is:
$x=\frac{2 \pi}{9}+\frac{2 \pi}{3} k, k \in \mathbb{Z}$ or $x=\frac{4 \pi}{9}+\frac{2 \pi}{3} k, k \in \overline{\mathcal{E}}$
Substitute integer values for k to obtain all other roots between
$-\pi$ and π.
When $k=1$:
$x=\frac{2 \pi}{9}+\frac{2 \pi}{3}$
$x=\frac{8 \pi}{9}$
or $\quad x=\frac{4 \pi}{9}+\frac{2 \pi}{3}$

When $k=-1$:
$x=\frac{2 \pi}{9}-\frac{2 \pi}{3}$
or $\quad x=\frac{4 \pi}{9}-\frac{2 \pi}{3}$
$x=\frac{4 \pi}{9}$
$x=-\frac{2 \pi}{9}$
When $k=-2$:
$x=\frac{2 \pi}{9}-\frac{4 \pi}{3} \quad$ or $\quad x=\frac{4 \pi}{9}-\frac{4 \pi}{3}$
$x=\frac{10 \pi}{9}$, not in
$x=-\frac{8 \pi}{9}$
the domain
The roots are: $x= \pm \frac{2 \pi}{9}, x= \pm \frac{4 \pi}{9}$, and $x= \pm \frac{8 \pi}{9}$

In Example 1, each root can be verified by substituting it into the original equation.

Example 2
 Determining the Approximate Roots of a First-Degree Trigonometric Equation

Check Your Understanding

2. a) To the nearest hundredth, solve the equation $\cos x-6=4 \cos x-4$
 then write the general solution.
b) To the nearest degree, solve the equation
$\sqrt{2} \csc x=-5$ for
$-180^{\circ} \leq x<100^{\circ}$, then write the general solution.

) $\cos x-6=4 \cos x-4$
$-3 \cos x=2$
$\cos x=-\frac{2}{3} \leftarrow \operatorname{cosine~is~negative~}$
$x=\cos ^{-1}\left(-\frac{2}{3}\right)$
$X \doteq 2.30 \leftarrow Q 2$
$2 \pi-2.30 \doteq 3.98 \leftarrow Q 3$
$x=2.30+2 \pi n, 3.98+2 \pi n$ where $n \in \mathbb{Z}$
b) $\quad \csc x=-\frac{5}{\sqrt{2}}$ $\begin{aligned} \sin x & =-\frac{\sqrt{2}}{5} \leftarrow \text { sine is negative in } \\ x & =\sin ^{-1}\left(-\frac{\sqrt{2}}{5}\right) \quad \text { Q3 \& Q4 } \\ x & =-0.29 \leftarrow Q 4 \\ x & =-\pi+0.29 \doteq-2.85 \leftarrow Q 3\end{aligned}$
if $0 \leq x<2 \pi$
$-0.29+2 \pi \doteq 6.00 \leftarrow Q 4$
$\pi+0.29 \doteq 3.42 \leftarrow Q 3$
general solution:
$x=-0.29+2 \pi n,-2.85+2 \pi n$ where $n \in \mathbb{Z}$
a) To the nearest hundredth, solve the equation
$5-3 \tan x=2 \tan x+1$ for $-\pi \leq x<\frac{3 \pi}{2}$, then write the general solution.
b) To the nearest degree, solve the equation $3=\sqrt{3} \sec x$ for $-90^{\circ} \leq x<270^{\circ}$, then write the general solution.

SOLUTION

a) $5-3 \tan x=2 \tan x+1 \quad$ Solve for $\tan x$

$$
\begin{aligned}
4 & =5 \tan x \\
\tan x & =\frac{4}{5}
\end{aligned}
$$

Since $\tan x$ is positive, the terminal arm of angle x lies in Quadrant 1 or 3.
The reference angle is! $\tan ^{-1}\left(\frac{4}{5}\right)=0.6747 \ldots$
For $0 \leq x<\frac{3 \pi}{2}$:
In Quadrant $1, x=0.6747 \ldots$
In Quadrant 3, $x=\pi+0.6747 \ldots$

$$
x=3.8163 \ldots
$$

For $-\pi \leq x<0$:
In Quadrant 3, $x=-\pi+0.6747 \ldots$

$$
x=-2.4668 \ldots
$$

To the nearest hundredth, the roots are: $x=0.67, x=3.82$, and $x=-2.47$
The period of $\tan x$ is π, so the general solution is approximately: $x=0.67+\pi k, k \in \mathbb{Z}$
b) $3=\sqrt{3} \sec x \quad$ Solve for $\cos x$.
$\sec x=\frac{3}{\sqrt{3}}$, or $\sqrt{3}$
$\cos x=\frac{1}{\sqrt{3}}$
Since $\cos x$ is positive, the terminal arm of angle x lies in
Quadrant 1 or 4.
The reference angle is: $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)=54.7356 \ldots$ 。
For $0 \leq x<270^{\circ}$, in Quadrant $1, x \doteq 55^{\circ}$
For $-90^{\circ} \leq x<0^{\circ}$, in Quadrant $4, x=-55^{\circ}$
To the nearest degree, the roots are: $x=55^{\circ}$ and $x=-55^{\circ}$
The period of $\cos x$ is 360°, so the general solution is
approximately: $x= \pm 55^{\circ}+k 360^{\circ}, k \in \mathbb{Z}$

Recall the strategy for solving a quadratic equation such as:

```
    \(5 x^{2}=1-4 x \quad\) Move all the terms to one side.
    \(5 x^{2}+4 x-1=0 \quad\) Factor.
\((5 x-1)(x+1)=0 \quad\) Equate each factor to 0 , then solve for \(x\).
Either \(5 x-1=0\) or \(x+1=0\)
\[
5 x=1 \quad x=-1
\]
\[
x=\frac{1}{5}
\]
```

The algebraic strategies for solving a quadratic equation can be applied to solve a second-degree trigonometric equation. Consider solving the equation $5 \cos ^{2} x=1-4 \cos x$ over the domain $0 \leq x<2 \pi$.
$5 \cos ^{2} x=1-4 \cos x \quad$ Move all the terms to one side.
$5 \cos ^{2} x+4 \cos x-1=0 \quad$ Factor the expression, treating $\cos x$ as the variable.
$(5 \cos x-1)(\cos x+1)=0 \quad$ Equate each factor to 0 , then solve for $\cos x$.
Either $5 \cos x-1=0 \quad$ or $\quad \cos x+1=0$

$$
\begin{array}{rc}
5 \cos x=1 & \cos x=-1 \\
\cos x=\frac{1}{5} & \text { The terminal arm of angle } x \text { lies on the }
\end{array}
$$

$\cos x$ is positive when the negative x-axis, so: $x=\pi$
terminal arm of angle x lies in
Quadrant 1 or 4.

$$
\begin{aligned}
\text { In Quadrant } 1, x & =\cos ^{-1}\left(\frac{1}{5}\right) \\
x & =1.3694 \ldots \\
\text { In Quadrant } 4, x & =2 \pi-1.3694 \ldots \\
x & =4.9137 \ldots
\end{aligned}
$$

The roots are: $x \doteq 1.37, x=\pi$, and $x \doteq 4.91$
The roots can be verified graphically.

The roots can also be verified by substituting in the original equation.

Example 3

Gheck Your Understanding

3. Use algebra to solve the equation $2 \cos ^{2} x=1$ over the domain $0^{\circ} \leq x \leq 360^{\circ}$.
8) $\quad 2 \cos ^{2} x=1$
$\cos ^{2} x=\frac{1}{2}$

Use algebra to solve the equation $4 \sin ^{2} x=3$ over the domain $-360^{\circ} \leq x \leq 0^{\circ}$.

SOLUTION

$4 \sin ^{2} x=3$
Solve for $\sin x$.
uovilairi $\geq x \geq$ vou.
8) $\quad 2 \cos ^{2} x=1$
$\cos ^{2} x=\frac{1}{2}$
$\cos x= \pm \sqrt{\frac{1}{2}}= \pm \frac{1}{\sqrt{2}}$

SOLUTION

$$
\begin{array}{rlr}
4 \sin ^{2} x & =3 & \text { Solve for } \sin x . \\
\sin ^{2} x & =\frac{3}{4} \\
\sin x & = \pm \sqrt{\frac{3}{4}}, \text { or } \pm \frac{\sqrt{3}}{2}
\end{array}
$$

Since $\sin x$ is positive or negative, there is a solution in every quadrant.
The reference angle is: $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=60^{\circ}$
In Quadrant $1, x=-360^{\circ}+60^{\circ}$, or -300°
In Quadrant $2, x=-180^{\circ}-60^{\circ}$, or -240°
In Quadrant $3, x=-180^{\circ}+60^{\circ}$, or -120°
In Quadrant $4, x=-60^{\circ}$
Verify by substituting each root in the equation: $4 \sin ^{2} x=3$
The roots are: $x=-60^{\circ}, x=-120^{\circ}, x=-240^{\circ}$, and $x=-300^{\circ}$

When a second-degree equation cannot be solved by factoring or using square roots, the quadratic formula is used.

Example 4 Solving a Trigonometric Equation Using the Quadratic Formula

Gheck Your Understanding

4. a) Use algebra to solve the equation $\cos x=1-3 \cos ^{2} x$ over the domain $-\pi \leq x \leq \pi$.
b) Determine the general solution.
Give the answers to the nearest hundredth.

$$
\begin{aligned}
& 3 \cos ^{2} x+\cos x-1=0 \\
& \cos x=\frac{-1 \pm \sqrt{1^{2}-4(3)(-1)}}{2(3)} \\
&=\frac{-1 \pm \sqrt{13}}{6}
\end{aligned}
$$

$$
\begin{aligned}
& \text { quadratic formula: } \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

a) Use algebra to solve the equation $4 \tan ^{2} x=2 \tan x+1$ over the domain $-\pi \leq x \leq \pi$.
b) Determine the general solution.

Give the answers to the nearest hundredth.

SOLUTION

a) $4 \tan ^{2} x=2 \tan x+1 \quad$ Move all the terms to one side.
$4 \tan ^{2} x-2 \tan x-1=0 \quad$ This does not factor.
Use the quadratic formula: $\tan x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Substitute: $a=4, b=-2, c=-1$
$\tan x=\frac{2 \pm \sqrt{(-2)^{2}-4(4)(-1)}}{2(4)}$
$\tan x=\frac{2 \pm \sqrt{20}}{8}$, or $\frac{1 \pm \sqrt{5}}{4}$

$$
-\pi \leq x \leq \pi
$$

Either $\tan x=\frac{1+\sqrt{5}}{4} \quad$ or $\tan x=\frac{1-\sqrt{5}}{4}$ $\tan x$ is positive when the terminal arm of angle x lies in Quadrant 1 or 3.
The reference angle is:
$\tan ^{-1}\left(\frac{1+\sqrt{5}}{4}\right)=0.6802 \ldots$
$\tan x$ is negative when the terminal arm of angle x lies in Quadrant 2 or 4. The reference angle is: $\tan ^{-1}\left(\frac{\sqrt{5}-1}{4}\right)=0.2997 \ldots$
In Quadrant $1, x=0.6802 \ldots$ In Quadrant 2, In Quadrant 3, $\quad x=\pi-0.2997 \ldots$ $x=-\pi+0.6802 .$.
$x=2.8418$.. $x=-2.4613 \ldots \quad$ In Quadrant $4, x=-0.2997 \ldots$
Verify by substituting each root in the given equation.
To the nearest hundredth, the roots are: $x=-2.46, x=-0.30$, $x=0.68$, and $x=2.84$
b) The period of $\tan x$ is π, so the general solution is approximately: $x=0.68+\pi k, k \in \mathbb{Z}$ or $x=2.84+\pi k, k \in \mathbb{Z}$

THINK FURTHER

In Example 4, when $\tan x$ is negative, why is the reference angle $\tan ^{-1}\left(\frac{\sqrt{5}-1}{4}\right)$? 0

The solution of the equation in Example 4 can be verified by graphing.
On a graphing calculator, input $y=4 \tan ^{2} x$ and $y=2 \tan x+1$, then determine the approximate x-coordinates of the points
 of intersection:
$x=-2.461378$
$X=-0.2997086$
$\mathrm{X}=0.68021498$
$\mathrm{X}=2.8418841$
These values match the values determined algebraically, so the solution is verified.

- $\quad \cos x=\frac{-1 \pm \sqrt{13}}{6}$

$$
x=\cos ^{-1}\left(\frac{-1+\sqrt{13}}{6}\right)=2.45 \leftarrow Q 2
$$

$$
\mid \quad x=-2.45 \leftarrow Q 3
$$

$$
\begin{aligned}
x=\cos ^{-1}\left(\frac{-1-\sqrt{13}}{6}\right) & =1.12 \leftarrow Q 1 \\
x & =-1.12 \leftarrow Q 4
\end{aligned}
$$

general solution: $x= \pm 1.12+2 \pi n, \pm 2.45+2 \pi n$ where $n \in \mathbb{Z}$.

Try: $p .592 \# 2,4,6,7,11,14$

Discuss the Ideas

1. For equations of the form $\sin x=c, \cos x=c$, and $\tan x=c$, where c is a constant, what restrictions are there on the value of c for the equations to have real solutions?
8
2. How do you recognize when an exact solution to a trigonometric equation exists?
θ
3. A second-degree trigonometric equation in terms of $\sin x, \cos x$, or $\tan x$ is solved over the domain $0 \leq x<2 \pi$. How many roots could the equation have?

Exercises

A

Use algebra to solve each equation. Give exact values when possible; otherwise write the roots to the nearest degree or the nearest hundredth of a radian. Verify the solutions.
4. Solve each equation over the domain $0 \leq x<2 \pi$.
a) $\sin x=\frac{\sqrt{3}}{2}$
b) $\tan x=\frac{1}{\sqrt{3}}$

