7.2 Solving Trig Equations

7.2 Solving Trigonometric Equations Algebraically

FOCUS Use an algebraic method to solve first- and second-degree trigonometric equations.

Construct Understanding

Without graphing, solve the equation $4\cos x + 3 = 7\cos x + 2$ for $0 \le x < 2\pi$.

Check the solution graphically.

$$\frac{1}{4}\cos x + 3 = 7\cos x + 2$$

$$-7\cos x - 7\cos x$$

$$-3\cos x = \frac{1}{3}$$

$$x = \cos^{-1}\left(\frac{1}{3}\right)$$

$$x = 1.23 \leftarrow 91$$
* There is another solution in 94.

$$+ \text{ for cosine solutions, subtract answer from } 2\pi$$

$$2\pi - 1.23 = 5.05$$

$$x = 1.23, 5.05$$

To solve a first-degree trigonometric equation, isolate the trigonometric function to reduce the equation to the form $\sin x = a$, $\cos x = a$, or $\tan x = a$, where a is a constant. Some of these equations have exact numerical solutions. In these cases, the solution is a multiple of $\frac{\pi}{6}$ or $\frac{\pi}{4}$.

Consider solving this equation for $0 \le x < 2\pi$: Use the completed table $2 \cos x + 1 = 0$ Isolate $\cos x$. Use the completed table in Chapter 6, page 476,

$$2\cos x = -1$$
$$\cos x = -\frac{1}{2}$$

Use the completed table in Chapter 6, page 476, to identify the exact angle.

The cosine of an angle is negative when its terminal arm lies in Quadrant 2 or 3.

The reference angle is:
$$\cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$$

In Quadrant 2, x is:
$$\pi - \frac{\pi}{3} = \frac{2\pi}{3}$$

In Quadrant 3, x is:
$$\pi + \frac{\pi}{3} = \frac{4\pi}{3}$$

So, the roots are:
$$x = \frac{2\pi}{3}$$
 and $x = \frac{4\pi}{3}$

The graph of $y = 2 \cos x + 1$ has period 2π .

So, the general solution of the equation $2 \cos x + 1 = 0$ is:

$$x = \frac{2\pi}{3} + 2\pi k$$
 or $x = \frac{4\pi}{3} + 2\pi k$, where $k \in \mathbb{Z}$

THINK FURTHER

What are the roots of 2 $\cos x + 1 = 0$ over the domain $-2\pi \le x < 0$?

Example 1

Determining the Exact Roots of a First-Degree Trigonometric Equation

Check Your Understanding

- 1. a) Use algebra to solve the equation $7 + 2 \sin x =$ $4 \sin x + 5 \text{ for}$
- $-2\pi 360^{\circ} < x \le 0^{\circ}$, then write the general solution.
 - b) Use algebra to determine the general solution of the equation $\cos 3x = -1$ over the set of real numbers, then list the roots in the domain $-2\pi \le x < 0$.
- a) 7 + 2sinx = 4sinx + 5 -2sinx =-2 $\sin \chi = 1$ $\chi = \frac{\pi}{2}$
 - * but -217 (X 40 so subtract 217 $\frac{\pi}{2} - 2\pi = -\frac{3\pi}{2}$
 - general solution: $\chi = -\frac{3\pi}{2} + 2\pi n$
 - b) $\cos 3x = -1$ $\cos x = -1$ 3x= \(\tau \) \(\chi = \tau \) $\chi = \frac{\pi}{2}$

cos 3x has a period of 2T

: other solutions in $0 \le \chi < 2\pi$ and **b)** $\cos 3x = -\frac{1}{2}$ 其· 驾 = 驾 = 兀 九+35=55

qeneral solution: $\chi = \frac{\pi}{3} + \frac{2\pi}{3}n$

Try #2,4,7

#2
$$\sin x = \frac{1}{2}$$
 $\tan x = \frac{1}{2}$, $\sin x = \frac{1}{2}$ $\tan x = \frac{1}{2}$ $\tan x = \frac{1}{2}$ $\sin x = \frac{1}{2}$ $\tan x = \frac{1}{2}$ $\sin x = 0, \pm 1$ (same for assine)

- a) Use algebra to solve the equation $\sqrt{2} \sin x 3 = -2$ for $-360^{\circ} < x \le 0^{\circ}$, then write the general solution.
- b) Use algebra to determine the general solution of the equation $\cos 3x = -\frac{1}{2}$ over the set of real numbers, then list the roots in the domain $-\pi \le x < \pi$.

SOLUTION

a) $\sqrt{2} \sin x - 3 = -2$ Solve for sin x. $\sqrt{2} \sin x = 1$ $\sin x = \frac{1}{\sqrt{2}}$

Since $\sin x$ is positive, the terminal arm of angle x lies in Quadrant 1 or 2.

The reference angle is: $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = 45^{\circ}$

In Quadrant
$$1, x = -360^{\circ} + 45^{\circ}$$

$$x = -315^{\circ}$$

In Quadrant 2,
$$x = -180^{\circ} - 45^{\circ}$$

 $x = -225^{\circ}$

The roots are: $x = -315^{\circ}$ and $x = -225^{\circ}$

The period of sin x is 360°, so the general solution is:

$$x = -315^{\circ} + k360^{\circ}, k \in \mathbb{Z}$$

or $x = -225^{\circ} + k360^{\circ}, k \in \mathbb{Z}$

$$\cos 3x = -\frac{1}{3}$$

Since $\cos 3x$ is negative, the terminal arm of angle 3x lies in Quadrant 2 or 3.

The reference angle for angle 3x is: $\cos^{-1}(\frac{1}{2}) = \frac{\pi}{3}$

In Quadrant 2:

In Quadrant 3:

A solution is:

A solution is:

$$\delta x = \pi - \frac{\pi}{3}$$

$$3x = \pi + \frac{\pi}{3}$$

$$x = \frac{2\pi}{3}$$

$$3x = \frac{44}{3}$$

$$x = \frac{2\pi}{9}$$

$$x = \frac{4\tau}{9}$$

For angle 3x

For angle x

The period of $\cos 3x$ is $\frac{2\pi}{3}$, so the general solution is: $x=\frac{2\pi}{9}\,+\frac{2\pi}{3}k, k\in\mathbb{Z} \text{ or } x=\frac{4\pi}{9}\,+\frac{2\pi}{3}k, k\in\mathbb{Z}$

$$x = \frac{2\pi}{9} + \frac{2\pi}{3}k, k \in \mathbb{Z} \text{ or } x = \frac{4\pi}{9} + \frac{2\pi}{3}k, k \in \mathbb{Z}$$

Substitute integer values for k to obtain all other roots between $-\pi$ and π .

When k = 1:

$$x = \frac{4\pi}{9} + \frac{2\pi}{3}$$

$$x = \frac{8\pi}{9}$$

$$x = \frac{2\pi}{9} + \frac{2\pi}{3}$$
 or
$$x = \frac{4\pi}{9} + \frac{2\pi}{3}$$

$$x = \frac{8\pi}{9}$$
 or
$$x = \frac{10\pi}{9}$$
, not in the domain

$$x = \frac{2\pi}{9} - \frac{2\pi}{3}$$

$$x = \frac{4\pi}{9} - \frac{2\pi}{3}$$

$$x = -\frac{4\pi}{9}$$

$$x = -\frac{2\pi}{9}$$

$$x = \frac{2\pi}{9} - \frac{4\pi}{3}$$

$$c = \frac{4\pi}{9} - \frac{4\pi}{3}$$

When
$$k = -1$$
:
 $x = \frac{2\pi}{9} - \frac{2\pi}{3}$ or $x = \frac{4\pi}{9} - \frac{2\pi}{3}$
 $x = -\frac{4\pi}{9}$ or $x = -\frac{2\pi}{9}$
When $k = -2$:
 $x = \frac{2\pi}{9} - \frac{4\pi}{3}$ or $x = \frac{4\pi}{9} - \frac{4\pi}{3}$
 $x = \frac{10\pi}{9}$, not in $x = -\frac{8\pi}{9}$

$$x = -\frac{8\tau}{9}$$

The roots are: $x = \pm \frac{2\pi}{9}$, $x = \pm \frac{4\pi}{9}$, and $x = \pm \frac{8\pi}{9}$

In Example 1, each root can be verified by substituting it into the original equation.

Check Your Understanding

2. a) To the nearest hundredth, solve the equation $\cos x - 6 = 4\cos x - 4$ then write the general

solution.

- b) To the nearest degree, solve the equation $\sqrt{2}$ csc x = -5 for $-180^{\circ} \le x < 180^{\circ}$, then write the general solution.
- a) cosx 6 = 4cosx 4 -3cosx = 2 $\cos \chi = -\frac{2}{3} \leftarrow \cos \ln e$ is near $\chi = \cos^{-1}\left(-\frac{2}{3}\right)$ X = 2.30 ←Q2 2π -2.30 = 3.98 +Q3

$$\chi = 2.30 + 2\pi m$$
, $3.98 + 2\pi m$
where $m \in \mathbb{Z}$

if
$$0 \le x \le 2\pi$$

 $-0.29 + 2\pi = 6.00 \leftarrow 94$
 $\pi + 0.29 = 3.42 \leftarrow 93$

general solution: x= -0.29 +21th ,-2.85 +21th where n & Z

- a) To the nearest hundredth, solve the equation $5-3\tan x=2\tan x+1$ for $-\pi \le x<\frac{3\pi}{2}$, then write the general solution.
- **b)** To the nearest degree, solve the equation $3 = \sqrt{3} \sec x$ for -90° ≤ x < 270°, then write the general solution.

SOLUTION

a) $5 - 3 \tan x = 2 \tan x + 1$ Solve for $\tan x$. $4 = 5 \tan x$ $\tan x = \frac{4}{5}$

Since $\tan x$ is positive, the terminal arm of angle x lies in Quadrant 1 or 3.

The reference angle is:
$$tan^{-1}\left(\frac{4}{5}\right) = 0.6747...$$

In Quadrant 1,
$$x = 0.6747...$$

In Quadrant 3, $x = \pi + 0.6747...$

For $0 \le x < \frac{3\pi}{2}$:

For $-\pi \le x < 0$: In Quadrant 3, $x = -\pi + 0.6747...$

The period of $\tan x$ is π , so the general solution is approximately: $x = 0.67 + \pi k, k \in \mathbb{Z}$

$$\cos x = \frac{1}{\sqrt{3}}$$

Since $\cos x$ is positive, the terminal arm of angle x lies in Quadrant 1 or 4.

The reference angle is: $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right) = 54.7356...^{\circ}$

For
$$0 \le x < 270^{\circ}$$
, in Quadrant $1, x = 55^{\circ}$

For
$$-90^{\circ} \le x < 0^{\circ}$$
, in Quadrant 4, $x = -55^{\circ}$

To the nearest degree, the roots are: $x = 55^{\circ}$ and $x = -55^{\circ}$ The period of $\cos x$ is 360°, so the general solution is approximately: $x = \pm 55^{\circ} + k360^{\circ}, k \in \mathbb{Z}$

 $5x^2 + 4x - 1 = 0$ Factor.

(5x - 1)(x + 1) = 0 Equate each factor to 0, then solve for x.

Either
$$5x - 1 = 0$$
 or $x + 1 = 0$
 $5x = 1$ $x = -1$

$$5x = 1 \qquad x$$
$$x = \frac{1}{5}$$

The algebraic strategies for solving a quadratic equation can be applied to solve a second-degree trigonometric equation. Consider solving the equation $5\cos^3 x = 1 - 4\cos x$ over the domain $0 \le x < 2\pi$.

 $5\cos^2 x = 1 - 4\cos x$ Move all the terms to one side. $5\cos^2 x + 4\cos x - 1 = 0$ Factor the expression, treating

 $(5\cos x - 1)(\cos x + 1) = 0$ cos x as the variable. Equate each factor to 0, then solve for $\cos x$.

Either $5 \cos x - 1 = 0$ or $\cos x + 1 = 0$ $5 \cos x = 1$ $\cos x = -1$

 $\cos x = \frac{1}{5}$ The terminal arm of angle x lies on the ositive when the negative x-axis, so: $x = \pi$

 $\cos x$ is positive when the terminal arm of angle x lies in Quadrant 1 or 4.

In Quadrant 1, $\alpha = \cos^{-1}(\frac{1}{5})$

$$x = 1.3694...$$

In Quadrant 4, $x=2\pi-1.3694...$

$$x = 4.9137...$$

The roots are: x = 1.37, $x = \pi$, and x = 4.91

The roots can be verified graphically.

The roots can also be verified by substituting in the original equation.

@P DO NOT COPY.

7.2 Solving Trigonometric Equations Algebraically

Ø

589

Example 3

Solving a Second-Degree Trigonometric Equation by Using Square Roots

Check Your Understanding

- Use algebra to solve the equation 2 cos²x = 1 over the domain 0° ≤ x ≤ 360°.
- $2\cos^2 x = 1$ $\cos^2 x = \frac{1}{2}$
- SOLUTION

 $-360^{\circ} \le x \le 0^{\circ}$.

 $4\sin^2 x = 3$

Solve for sin x.

Use algebra to solve the equation $4 \sin^2 x = 3$ over the domain

$$2\cos^2 x = 1$$

$$\cos^2 x = \frac{1}{2}$$

$$\cos^2 x = \frac{1}{2}$$

$$\cos^2 x = \frac{1}{2}$$

$$\cos^2 x = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

$$x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{5\pi}{4}, \frac{5\pi}{4}$$

SOLUTION

$$4 \sin^2 x = 3$$

$$\sin^2 x = \frac{3}{4}$$

$$\sin x = \pm \sqrt{\frac{3}{4}}, \text{ or } \pm \frac{\sqrt{3}}{2}$$

Since $\sin x$ is positive or negative, there is a solution in every quadrant.

The reference angle is:
$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = 60^{\circ}$$

In Quadrant 1,
$$x = -360^{\circ} + 60^{\circ}$$
, or -300°

In Quadrant 2,
$$x = -180^{\circ} - 60^{\circ}$$
, or -240°

In Quadrant 3,
$$x = -180^{\circ} + 60^{\circ}$$
, or -120°

In Quadrant 4,
$$x = -60^{\circ}$$

Verify by substituting each root in the equation: $4 \sin^2 x = 3$

The roots are:
$$x = -60^{\circ}$$
, $x = -120^{\circ}$, $x = -240^{\circ}$, and $x = -300^{\circ}$

When a second-degree equation cannot be solved by factoring or using square roots, the quadratic formula is used.

Example 4

Solving a Trigonometric Equation Using the Quadratic Formula

Check Your Understanding

4. a) Use algebra to solve the equation

$$\cos x = 1 - 3 \cos^2 x$$
 over
the domain $-\pi \le x \le \pi$.

b) Determine the general solution.

Give the answers to the nearest hundredth.

$$3\cos^2 x + \cos x - 1 = 0$$
$$\cos x = \frac{-1 \cdot \sqrt{1^2 - 4(3) \times 10}}{2(3)}$$

quadratic formula:

$$\chi = \frac{-b \frac{1}{3}b^{2} - 4ac}{30}$$

a) Use algebra to solve the equation $4 \tan^2 x = 2 \tan x + 1$ over the domain $-\pi \le x \le \pi$.

b) Determine the general solution.

Give the answers to the nearest hundredth.

SOLUTION

a) $4 \tan^2 x = 2 \tan x + 1$ Move all the terms to one side. $4 \tan^2 x - 2 \tan x - 1 = 0$ This does not factor.

Use the quadratic formula: $\tan x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Substitute:
$$a = 4$$
, $b = -2$, $c = -1$

$$\tan x = \frac{2 \pm \sqrt{(-2)^2 - 4(4)(-1)}}{2(4)}$$

$$\tan x = \frac{2 \pm \sqrt{20}}{8}, \text{ or } \frac{1 \pm \sqrt{5}}{4}$$

Either
$$\tan x = \frac{1 + \sqrt{5}}{4}$$

 $\tan x$ is positive when the terminal arm of angle x lies in Quadrant 1 or 3.

The reference angle is:

$$\tan^{-1}\left(\frac{1+\sqrt{5}}{4}\right) = 0.6802...$$

In Quadrant 1, x = 0.6802...In Quadrant 3,

 $x = -\pi + 0.6802...$

$$x = -2.4613...$$

In Quadrant 2, $x = \pi - 0.2997...$ x = 2.8418...

tan x is negative when the

in Quadrant 2 or 4.

The reference angle is:

terminal arm of angle x lies

or $\tan x = \frac{1 - \sqrt{5}}{4}$

In Quadrant 4, x = -0.2997...

Verify by substituting each root in the given equation. To the nearest hundredth, the roots are: x = -2.46, x = -0.30,

x = 0.68, and x = 2.84

b) The period of tan x is π, so the general solution is approximately: $x = 0.68 + \pi k, k \in \mathbb{Z} \text{ or } x = 2.84 + \pi k, k \in \mathbb{Z}$

- T 4 X 4 T

$$Cos x = \frac{-1!\sqrt{13}}{6}$$

 $x = cos^{-1} \left(\frac{-1!\sqrt{13}}{6} \right) = 2.45 + Q2$

$$\chi = \cos^{-1}\left(\frac{-1 - \sqrt{13}}{6}\right) = 1.12 + Q$$

general solution: $\chi = \pm 1.12 + 2\pi n$, $\pm 2.45 + 2\pi n$ where $n \in \mathbb{Z}$.

Try: p.542 #2,4,6,7,11,14

THINK FURTHER

In Example 4, when tan x is negative, why is the reference angle $\tan^{-1}\left(\frac{\sqrt{5}-1}{4}\right)$?

The solution of the equation in Example 4 can be verified by graphing.

On a graphing calculator, input $y = 4 \tan^2 x$ and $y = 2 \tan x + 1$, then determine the approximate x-coordinates of the points of intersection:

X = -2.461378

X = -0.2997086X = 0.68021498

X = 2.8418841

These values match the values determined algebraically, so the solution is verified.

Discuss the Ideas

1. For equations of the form sin x = c, cos x = c, and tan x = c, where c is a constant, what restrictions are there on the value of c for the equations to have real solutions?

2. How do you recognize when an exact solution to a trigonometric equation exists?

3. A second-degree trigonometric equation in terms of sin x, cos x, or tan x is solved over the domain 0 ≤ x < 2π. How many roots could the equation have?

Ø

Exercises

Α

Use algebra to solve each equation. Give exact values when possible; otherwise write the roots to the nearest degree or the nearest hundredth of a radian. Verify the solutions.

4. Solve each equation over the domain $0 \le x < 2\pi$.

a)
$$\sin x = \frac{\sqrt{3}}{2}$$

b)
$$\tan x = \frac{1}{\sqrt{3}}$$