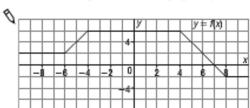
6.6 Combining Transformations of Sinusoidal Functions

FOCUS Apply all transformations to graphs of sinusoidal functions.

Get Started

The graph of y = f(x) is shown.

On the same grid, sketch the graph of $y + 3 = \frac{1}{2} f(2(x - 4))$.



Construct Understanding

The graph of $y = \sin x$ is shown below.

On the same grid, sketch a graph of $y = \sin 2x$.

On the second grid, sketch graphs of:

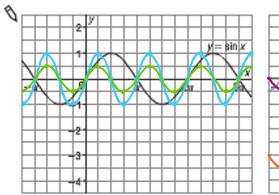
$$y = \frac{1}{2}\sin 2x$$
 $y = \frac{1}{2}\sin 2\left(x - \frac{\pi}{4}\right)$

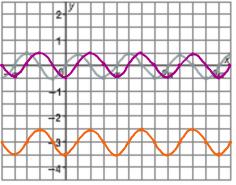
$$y = \frac{1}{2} \sin 2\left(x - \frac{\pi}{4}\right) - 3$$

Label each image graph with its equation.

Describe how the graph changes with each transformation.

Complete the table below.





	Equation of Function					
Characteristic	$y = \sin 2x$	$y=\frac{1}{2}\sin 2x$	$y = \frac{1}{2}\sin 2\left(x - \frac{\pi}{4}\right)$	$y = \frac{1}{2}\sin 2\left(x - \frac{\pi}{4}\right) - 3$		
Period	$\frac{2\pi}{2} = \pi$					
Amplitude	1	12				
Domain of function	XER					
Range of function	-14 y 41	$-\frac{1}{2} \le y \le \frac{1}{2}$		(Subtract 3 from max/min) $-3.5 \le y \le -2.5$		
Phase shift	none		<u> </u>	,		
Zeros	0, π, π,		(add 154 to each zero)			
	$0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi$		平,3元,5八元,···			

The graph of a function y = af(b(x - c)) + d is the image of the graph of y = f(x) after transformations. The transformations depend on the values of the constants a, b, c, and d.

Ø

y = af(b(x - c)) + d							
Constant	a	ь	с	d			
Transformation applied to the graph of $y = f(x)$	vertical stretch or compression by a factor of a ; if a < 0, there is also a reflection in the x-axis	horizontal stretch or compression by a factor of $\frac{1}{ b }$; if $b < 0$, there is also a reflection in the y-axis	horizontal translation of c units	vertical translation of <i>d</i> units			

In Lesson 6.5, these transformations were applied to the graphs of $y = \sin x$, $y = \cos x$, and $y = \tan x$. The transformations may change the period, the location of the centre line, any zeros, and the amplitude of a sinusoidal function. As a result, the range may also change.

The appearance of the graph of a trigonometric function can be predicted from its equation.

Example 1

Using Transformations to Sketch a Graph of a Trigonometric Function

Check Your Understanding

- **1. a)** Predict how the graph of $y = \frac{1}{4} \cos 3\left(x + \frac{\pi}{6}\right) + 2$ is related to the graph of $y = \cos x$.
 - b) Sketch the graph of $y = \frac{1}{4}\cos 3\left(x + \frac{\pi}{6}\right) + 2$ for $-2\pi \le x \le 2\pi$, then list the characteristics of the function.

- a) Predict how the graph of $y = 2 \sin \frac{1}{2} \left(x \frac{\pi}{3} \right) 1$ is related to the graph of $y = \sin x$.
- **b)** Sketch the graph of $y = 2 \sin \frac{1}{2} \left(x \frac{\pi}{3} \right) 1$ for $0 \le x \le 4\pi$, then list the characteristics of the function.

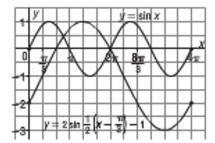
SOLUTION

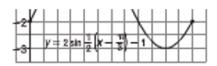
- a) The graph of y = 2 sin ½ (x π/3) 1 is the image of the graph of y = sin x after the following transformations have been applied:
 - · a vertical stretch by a factor of 2
 - a horizontal stretch by a factor of 2
 - a horizontal translation (phase shift) of π/3 units right
 - a vertical translation of 1 unit down
- **b)** Sketch the graph of $y = \sin x$.

Since the phase shift is $\frac{\pi}{3}$, use a horizontal scale of 1 square represents $\frac{\pi}{3}$.

The horizontal stretch doubles the spacing between the zeros. The phase shift translates these points $\frac{\pi}{3}$ units right, then the vertical shift moves them 1 unit down. Plot these transformed points; they lie on the line y=-1, which is the centre line of the image graph. Choose other points on the graph of $y=\sin x$. For each point: double the x-coordinate; double the y-coordinate; shift the point $\frac{\pi}{3}$ units right; then 1 unit down

Plot the points on the grid and join them.





The amplitude is 2; the period is 4π ; the phase shift is $\frac{\pi}{3}$; the zeros are $\frac{2\pi}{3}$ and 2π ; the domain is $x \in \mathbb{R}$; and the range is $-3 \le y \le 1$.

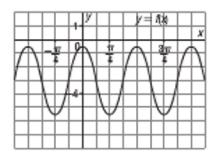
532 Chapter 6: Trigonometry

DO NOT COPY. @P

Example 2

Writing the Equation of the Graph of a Trigonometric Function

Write an equation for the sinusoidal function graphed below, in terms of $\sin x$.



SOLUTION

An equation has the form: $y = a \sin b(x - c) + d$

The equation of the centre line is y = -3, so the vertical translation is 3 units down and d = -3.

The amplitude is the distance between the centre line and a maximum or minimum point. This distance is: $a = \frac{5}{2}$

For the period, choose the x-coordinates of two adjacent minimum

points, such as
$$-\frac{\pi}{4}$$
 and $\frac{\pi}{4}$. The period is: $\frac{\pi}{4} - \left(\frac{\pi}{4}\right) = \frac{\pi}{2}$

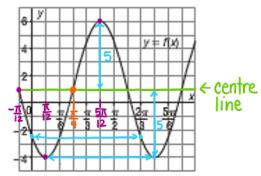
b is:
$$\frac{\text{period of } y = \sin x}{\text{period of given graph}} = \frac{2\pi}{\frac{\pi}{2}}$$
, or 4

Draw the line y=-3. Look for the closest point on either side of the y-axis where the sine function begins its cycle; that is, where the curve moves up to the right above the line. This point is at $x=-\frac{\pi}{8}$ on the given graph, so a possible phase shift is $-\frac{\pi}{8}$, and $c=-\frac{\pi}{8}$.

An equation is: $y = \frac{5}{2} \sin 4\left(x + \frac{\pi}{8}\right) - 3$

Check Your Understanding

Write an equation for the sinusoidal function graphed below, in terms of sin x.



 \Diamond amplitude: $5 \rightarrow \alpha=5$

$$\frac{\text{max-min}}{2} = \frac{6 - (-4)}{2} = \frac{10}{2} = 5$$

period:
$$\frac{2\pi}{3}$$
 \rightarrow b = 2π ÷ period = 2π ÷ $\frac{2\pi}{3}$

= **3** m : 1 u

vertical translation: 1 unit up (locate centre line) 4 d = 1

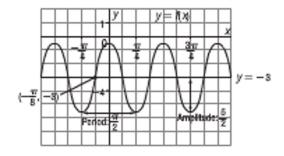
phase shift:

positive sine equation \rightarrow look for a point on the centre line after which the graph goes up $(c = \frac{\pi}{4})$

$$y = 5 \sin(3(x - \frac{\pi}{4})) + 1$$

■ negative sine equation \rightarrow look for a point on the centre line after which the graph goes down ($c = -\frac{\pi}{12}$)

An equation is: $y = \frac{5}{2} \sin 4\left(x + \frac{\pi}{8}\right) - 3$



a point on the centre line atterwhich the graph goes down ($C = -\frac{\pi}{12}$)

$$y = -5\sin(3(x + \frac{\pi}{12})) + 1$$

positive cosine equation \rightarrow look for a maximum point (c= $\frac{5\pi}{12}$)

$$y = 5\cos\left(3\left(x - \frac{5\pi}{12}\right)\right) + 1$$

m negative cosine equation \rightarrow look for a minimum point $(c = \frac{\pi}{12})$

$$y = -5\cos(3(x-\frac{\pi}{12}))+1$$

p. 535/536 #6(all) - write four equations for each graph (2 sine, 2 cosine / 2 pos., 2 neg.)

@P DO NOT COPY.

6.6 Combining Transformations of Sinusoidal Functions

(6a)
$$y = \frac{1}{2} \sin x$$

 $y = -\frac{1}{2} \sin(x - \pi)$
 $y = \frac{1}{2} \cos(x - \frac{\pi}{2})$
 $y = -\frac{1}{2} \cos(x - \frac{3\pi}{2})$

(6a)
$$y = \frac{1}{2} \sin x$$

 $y = -\frac{1}{2} \sin(x - \pi)$
 $y = -\sin(x - \frac{3\pi}{2}) - 2$
 $y = -\sin(x - \frac{\pi}{2}) - 2$
 $y = \cos(x - \frac{\pi}{2})$
 $y = \cos(x - \pi) - 2$
 $y = -\cos(x - \pi) - 2$

c)
$$y = Sin(4(x + \frac{\pi}{8}))$$

 $y = -Sin(4(x - \frac{\pi}{8}))$
 $y = Cos(4x)$
 $y = -cos(4(x - \frac{\pi}{4}))$

$$y = Sin(4(x + \frac{\pi}{8}))$$

$$y = -Sin(4(x + \frac{\pi}{8}))$$

$$y = -Sin(x + \frac{\pi}{6})$$

$$y = -Sin(x - \frac{5\pi}{6})$$

$$y = cos(x - \frac{\pi}{3})$$

$$y = -cos(x - \frac{4\pi}{3})$$