6.2 Arithmetic Series

Lesson 2: Arithmetic Series

An arithmetic series is the sum of the terms of an arithmetic sequence. For example, an arithmetic sequence is 5, 8, 11, 14, ... The related arithmetic series is 5 + 8 + 11 + 14 + ...

Find the sum of the first 5 terms of the arithmetic series $12 + 5 - 2 - \dots$

$$12+5-2-9-16 = -10$$

The sum of the first n terms of an arithmetic series, S_n , can be determined using either of the following formulae:

$$S_n = \frac{n}{2}(t_1 + t_n)$$

$$S_n = \frac{n}{2} [2t_1 + (n-1)d]$$

where t_1 is the first term, n is the number of terms, d is the common difference, and t_n is the nth term.

Example 1: Determine the sum of the arithmetic series 5 + 8 + 11 + ... + 53. (1) Determine which term is 53.

2 Determine the sum.

$$t_n = 5 + (n-1)(3)$$
 $53 = 5 + (n-1)(3)$
 $48 = (n-1)(3)$

16 = n-1 → n=17

$$S_{17} = \frac{17}{2}(5+53)$$
$$= \frac{17}{2} \cdot 58$$

Example 2: Determine the sum of the first 10 terms of the arithmetic series:

$$S_{10} = \frac{10}{2} [2(8) + (10-1)(-5)]$$

$$= 5 [16 + -45]$$

$$= 5 [-29]$$

$$= -145$$

a)
$$8+3-2-...$$

b) $\frac{2}{3}+\frac{5}{3}+\frac{8}{3}+...$
 $S_{10} = \frac{10}{2} \left[2(8) + (10-1)(-5) \right]$
 $= 5 \left[16 + -45 \right]$
 $= 5 \left[-24 \right]$
 $= -145$
Example 3: Determine the sum, S_n , for each arithmetic series described.
b) $t_1 = 12$ $t_2 = 8$ $t_3 = 9$

a)
$$t_1 = 7$$
, $t_8 = 79$, $n = 8$
 $S_8 = \frac{8}{2}(7 + 79)$
= 4(86)
= 344

b)
$$t_1 = 12, d = 8, n = 9$$

$$S_q = \frac{q}{2} [2(12) + (q-1)(8)]$$

$$= \frac{q}{2} [24 + 64]$$

$$= \frac{q}{2} [88]$$

$$= 396$$

Example 4: Determine the value of the first term if the sum of the first 18 terms is 279 and the common difference is -3.

$$S_{n} = \frac{n}{2} [2t_{1} + (n-1)(d)]$$

$$S_{18} = 279$$

$$279 = \frac{18}{2} [2t_{1} + (18-1)(-3)]$$

$$279 = 9 [2t_{1} - 51]$$

$$31 = 2t_{1} - 51$$

$$82 = 2t_{1}$$

Example 5: For the arithmetic series, determine the value of n if $t_1 = -6$, $t_n = 21$, and $S_n = 75$.

$$S_{n} = \frac{n}{2}(t_{1} + t_{n})$$

$$75 = \frac{n}{2}(-6 + 21)$$

$$2 \cdot 75 = \frac{n}{2}(15) \cdot 2$$

$$150 = n(15)$$

$$\frac{1}{15} = \frac{1}{15}$$
Example 6: Find t_{10} and s_{10} for the series $10 + 7 + 4 + ...$

$$t_{10} = 10 + 9(-3)$$
 $S_{10} = \frac{10}{2}(10 - 17)$
= 10 - 27 = 5(-7)
= -17 = -35

Assignment

Arithmetic Series

Name: _____

1. Determine the sum of the arithmetic series $8 + 3 - 2 - \dots -102$.

2. Determine the sum of the first 9 terms of the arithmetic series with $t_1 = 12$ and d = 8.

