6.1 Radian Measure and Coterminal Angles

PC 12

Radian Measure

A convenient way to measure some angles, such as central angles, is radian measure: the ratio of the arc length (s) to the radius of a circle (r). Since each length is measured in the same unit, the radian has no units.

On a circle of radius r, the radian measure of a central angle θ that intersects an arc of length a is given by $\theta = \frac{s}{r}$.

1 radian is defined as the angle subtended by an arc length, \bullet , equal to the radius, r since $\theta = \frac{r}{r} = 1$.

What is the arc length of a 360° angle? To answer this, we must know the circumference of a circle.

- \rightarrow Circumference of a circle: $2\pi\Gamma$
- \rightarrow The corresponding angle, θ , in radians is: $\theta = \frac{s}{r} = \frac{2\pi r}{r} = 2\pi r$

1 radian =
$$\frac{180^{\circ}}{\pi}$$
 and $1^{\circ} = \frac{\pi}{180}$ radians

Ex 1. a) Convert 60° to radians.

$$60 \times \frac{\pi}{180} = \frac{\pi}{3}$$

$${}^{5}150 \times \frac{\pi}{180} = \frac{5\pi}{6}$$

*Angles measured in radians are normally expressed without any units.

Ex 2. a) Convert
$$\frac{5\pi}{4}$$
 to degrees.

$$\frac{5\pi}{5} \times \frac{186}{\pi}^{45} = 225^{\circ}$$

b) Convert
$$\frac{2\pi}{3}$$
 to degrees.

b)

$$\frac{2\pi}{3} \times \frac{180^{60}}{\pi} = 120^{\circ}$$

Ex 3. Determine the length of the arc in the diagram a) to the nearest tenth, and the measure of the angle in diagram b), in radians.

Coterminal Angles

Angles with the same terminal arm in standard position are called coterminal angles. For example, when you sketch -260° , 100° and 460° in standard position, they look the same.

What must be added to (or subtracted from) and angle, given in degrees, to determine the value of a coterminal angle?

What must be added to (or subtracted from) and angle, given in radians, to determine the value of a coterminal angle?

Coterminal angles in general form:

Degrees: $\theta = 360n$ Radians: $\theta = 271n$ *n is an integer

For each angle in standard position, determine one positive and one negative angle measure that is coterminal with it.

reminal with it.

a)
$$270^{\circ}$$
b) $-\frac{5\pi}{4}$

$$-\frac{5\pi}{4} + 2\pi = \frac{3\pi}{4}$$

$$270 + 360 = -90^{\circ}$$

$$-\frac{5\pi}{4} - 2\pi = -\frac{13\pi}{4}$$

$$20 - 360 = -340^{\circ}$$

Express the angles coterminal with the angles above in general form.

a)
$$270 \pm 360n$$
 b) $-\frac{5\pi}{4} \pm 2\pi n$ c) $740 \pm 360n$

Assignment: #3, 4, 7, 9, 12 - 14 (handout)