Pre-Calc 12

Sequences and Series

Name:

Warm-up: Continue the pattern...

$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \dots$$
 (divide by 2 or multiply by $\frac{1}{2}$)

6.1 Geometric Sequences

A geometric sequence has a common ratio, r, which is multiplied by a term to generate the next term. Determine the value of r in each of these geometric sequences:

$$12, 6, 3, 1.5, 0.75, \dots$$

$$a, ab, ab^2, ab^3, ...$$

Write the first four terms given the first term is -4 and the common ratio is 3.

Determine the tenth term (t_{10}) and the general term (t_n) in the geometric sequence 3, 6, 12, ...

3, 6, 12,
$$\frac{24}{1}$$
, $\frac{48}{1}$, $\frac{96}{1}$, $\frac{192}{1}$, $\frac{384}{1}$, $\frac{768}{1}$, $\frac{1536}{1}$, ... $t_n = 3 \cdot 2^{n-1}$

3, 6, 12, $\frac{24}{1}$, $\frac{48}{1}$, $\frac{96}{1}$, $\frac{192}{1}$, $\frac{384}{1}$, $\frac{768}{1}$, $\frac{1536}{1}$, ... $t_n = 3 \cdot 2^{n-1}$

3, 2, $\frac{3 \cdot 2^n}{3 \cdot 2 \cdot 2 \cdot 2}$

(term 6) (term 10)

 1^{st} term: $t_1 =$

 2^{nd} term: $t_2 = ar$

 3^{rd} term: $t_3 = ar^2$

.

General term (n^{th} term):

$$t_n = ar^{n-1}$$

Example 1: Using the formula for finding the general term, find t_{14} in the sequence 3, 6, 12, ...

$$a = 3$$
 $r = 2$
 $n = 14$
 $t_{n} = t_{n} = ?$
 $t_{n} = t_{n} = ?$
 $t_{n} = t_{n} = 24576$

Which term has a value of 384?

$$a = 3$$
 $r = 2$
 $n = ?$
 $t_n = 384$
 $2^7 = 2^{n-1}$
 $2^7 = 2^{n-1}$
 $384 = 3 \cdot 2^{n-1}$

Example 2: Find the eleventh term of a sequence if $t_4 = 3$ and $t_8 = 243$.

Method 1:

$$t_{4} = ar^{3} = 3$$
; $t_{8} = ar^{7} = 243$
 $\frac{ar^{7}}{ar^{3}} = \frac{243}{3}$
 $r^{4} = 81$
 $r = \pm \sqrt[4]{81}$
 $r = \pm 3$
 $t_{11} = t_{8} \cdot r^{3}$
 $= 243 \cdot 3^{3}$ or $243(-3)^{3}$
 $= 6561$ or $243(-3)^{3}$

$$\frac{\alpha r^{5}}{\alpha r^{2}} = \frac{80}{10}$$

$$r^{3} = 8$$

$$r = 2 \quad * \text{ cannot be } -2 \quad *$$

$$t_{8} = 80 \cdot 2^{2}$$

$$= 320$$

$$t_{8} = 320$$

$$t_{8} = 320$$

$$t_{8} = 320$$

$$t_{8} = 320$$

$$t_{10} \cdot 2^{5}$$

$$= 320$$

$$t_{10} \cdot 2^{5}$$

$$= 320$$

$$t_{10} \cdot 2^{5}$$

$$= 320$$

Assignment: handout

Assignment: handout

6.1 Assignment

1. State the common ratio, then write the next 3 terms of each geometric sequence.

a)
$$-1$$
, -3 , -9 , ...

e)
$$\frac{1}{2}$$
, $\frac{1}{6}$, $\frac{1}{18}$, ...

2. For each geometric sequence, determine the indicated value.

a) 3, 6, 12, ...; determine
$$t_7$$

b) 18, 9, 4.5, ...; determine
$$t_6$$

c) 23,
$$-46$$
, 92, ...; determine t_{10}

d)
$$2, \frac{1}{2}, \frac{1}{8}, ...$$
; determine t_5

3. Write the first 4 terms of each geometric sequence, given the first term and the common ratio.

a)
$$t_1 = -3$$
; $r = 4$

b)
$$t_1 = 5$$
; $r = 2$

c)
$$t_1 = -0.5$$
; $r = -3$

d)
$$t_1 = \frac{1}{2}$$
; $r = \frac{2}{3}$

4. Use the given data about each finite geometric sequence to determine the indicated values.
a) Given $t_1 = -1$ and $r = -2$
i) Determine t ₉ .
ii) The last term is –4096. How many terms are in the sequence?
b) Given $t_1 = 0.002$ and $t_4 = 2$
i) Determine t_7 .
ii) Determine which term has the value 20 000.
5. In a geometric sequence, $t_3 = 9$ and $t_6 = 1.125$; determine t_7 and t_9 .
6. A beekeeper starts her business with 200 bees. New bees are hatched at a rate of 104% each week. How many bees were there after week 15?

- 7. A ball is dropped from a height of 25 m. After each bounce, the ball rises to 80% of the previous height.
- a) Write the first 3 terms of a geometric sequence that models the height of the ball in metres.
- b) To the nearest centimeter, to what height does the ball rise after the 5th bounce?
- c) To the nearest centimeter, to what height does the ball rise after the 10th bounce?
- d) After how many bounces does the ball rise to a height less than 1 m?

8. Between the Canadian censuses in 2001 and 2006, the number of people who could converse in Cree had increased by 7%. In 2006, 87 285 people could converse in Cree. Assume the 5—year increase continues to be 7%. Estimate to the nearest hundred how many people will be able to converse in Cree in 2031.

Answers:

Alswers.

1. a) 3; -27, -81, -243 b) 0.5; 6, 3, 1.5 c) -2; -200,400, -800 d) -0.5; -0.5, 0.25, -0.125 e) $\frac{1}{3}$; $\frac{1}{54}$, $\frac{1}{162}$, $\frac{1}{486}$ f) $-\frac{1}{2}$; 3, $-\frac{3}{2}$, $\frac{3}{4}$ 2. a) 192 b) 0.5625 c) -11776 d) $\frac{1}{128}$ 3. a) -3, -12, -48, -192 b) 5, 10, 20, 40 c) -0.5, 1.5, -4.5, 13.5 d) $\frac{1}{2}$, $\frac{1}{3}$, $\frac{2}{9}$, $\frac{4}{27}$ 4. a) i) -256 ii) 13 b) i) 2000 ii) t_8 5. 0.5625; 0.140625 6. 346 7. a) 20, 16, 12.8 b) 8.19 m c) 2.68 m d) 15 8. Approximately 122 400 people