Multiplying and Dividing Monomials

What are two ways to represent the perimeter of the square?

$$
\begin{gathered}
6 y+6 y+6 y+6 y \text { or } 4 \cdot 6 y \\
=24 y
\end{gathered}
$$

What are two ways to represent the area of the square?

$$
\begin{aligned}
& 6 y \cdot 6 y \text { or }(6 y)^{2} \\
&=36 y^{2}
\end{aligned}
$$

Example: Multiply each pair of monomials.
a) $\left(3 x^{\prime}\right)\left(2 x^{\prime}\right)=6 x^{2}$
b) $(3 x)(-2 x)=-6 x^{2}$
c) $(3 x)(2 y)=6 x y$
$=6 \cdot x \cdot x$
$=6 \cdot x \cdot y$

Practise: Multiply each pair of monomials.
a) $(4 x)(2 x)=8 x^{2}$
b) $(-3 x)(5 x)=-15 x^{2}$
c) $(5 y)(4 x)=20 y x$
$=20 x y$

Example: Divide each pair of monomials.
a) $\left(8 x^{2}\right) \div\left(4 x^{2}\right)=2 x$
b) $\frac{-4 x y}{2 x y}=-2 x$
c) $\frac{12 m^{\frac{1}{2}} n}{-3 \eta \eta^{n}}=-4 m n$
$\frac{12 \cdot m \cdot h \cdot n}{-3 \cdot h}$

Practise: Divide each pair of monomials.
a) $\left(6 x^{2}\right) \div(-2 x)=-3 x$
b) $\frac{10 x y}{5 y}=2 x$
c) $\frac{-12 x y}{-3 x}=4 y$

The area of a rectangle is given by the expression $15 x^{2}$. The width of the rectangle is represented by $3 x$. What is the length of the rectangle in terms of x ?

$$
\begin{aligned}
& \text { Area }=\text { length } \cdot \text { width } \\
& 15 x^{2}=\text { length } \cdot 3 x \rightarrow \text { length }=\frac{15 x^{2}}{3 x}=5 x
\end{aligned}
$$

The length is $5 x$.

Crackers are often packaged by stacking them in boxes shaped as square-based prisms. The volume of one cracker is given as $\pi r^{2} h$, where r is the radius of the cracker and h is its height. The volume of the box is given as $4 r^{2} h n$, where n is the number of crackers it can hold.
a) What does $\frac{4 r^{2} h n}{h n}$ equal? What does it represent?

$$
\begin{aligned}
\frac{4 r^{2} 1 n}{h n}=4 r^{2} & \leftarrow \text { represents the area of the } \\
& \text { base of the box }
\end{aligned}
$$

Area $=2 r \cdot 2 r=4 r^{2}$

b) What does $\frac{\pi r^{2} h}{4 r^{2} h n}$ equal? What does it represent?

$$
\begin{aligned}
& \qquad \frac{\pi r^{2} K}{4 p^{2} h n}=\frac{\pi}{4 n} \leftarrow \text { represents the fraction of space } \\
& \text { in the box taken by one cracker. } \\
& \text { volume of one cracker } \\
& \text { volume of the box }
\end{aligned}
$$

 260
 Assignment: p. 258 \#7-10, 15 -19, 22

