5.6 **Analyzing Logarithmic Functions**

FOCUS Use technology to graph transformations of logarithmic functions.

Get Started

Use a calculator to evaluate each expression.

$$2 \log 2$$

$$\frac{\log 3}{\log 4}$$

♦ = 0.69897

≐ 0.79248

Construct Understanding

Evaluate log,6.

Determine a strategy to verify your answer using graphing technology.

Ø

10926 = X

To use technology to evaluate a logarithm with base other than 10, the base of the logarithm has to be changed to 10.

Consider: $y = \log_{\epsilon} x$

Write this statement in exponential form.

 $b^y = x$

Take the common logarithm of both sides. Apply the power law to the left side.

 $\log b^y = \log x$

Divide both sides by log b.

 $y \log b = \log x$

 $y = \frac{\log x}{\log b}$

Substitute log x for y.

So, $\log_b x = \frac{\log x}{\log b}$

A similar relationship can be used to change the base b of a logarithm to any other base a.

@P DO NOT COPY.

5.6 Analyzing Logarithmic Functions

Changing the Base of a Logarithm

$$\log_b x = \frac{\log_a x}{\log_a b}$$
, where $a, b > 0$; $a, b \neq 1$; $x > 0$

Example 1

Using Technology to Approximate the Value of a Logarithm

Check Your Understanding

- Approximate the value of each logarithm, to the nearest thousandth. Write the related exponential expression.
 - a) log₄50
- b) log,6

Ø

a)
$$\log_5 50 = \frac{\log 50}{\log 5} \doteq 2.431$$

So,
$$5^{2.431} = 50$$

b)
$$\log_8 6 = \frac{\log 6}{\log 8} = 0.862$$

Approximate the value of each logarithm, to the nearest thousandth.

Write the related exponential expression.

a) log,100

b) log₃2

SOLUTION

Use the change of base formula.

a)
$$\log_{8} 100 = \frac{\log 100}{\log 6}$$

= 2.5701...

b)
$$\log_5 2 = \frac{\log 2}{\log 3}$$

= 0.630

$$log_s 100 = 2.570$$

$$log_5 2 = 0.631$$

$$So, 100 \doteq 6^{2.570}$$

$$So, 2 = 3^{0.031}$$

THINK FURTHER

In Example 1a, explain why $\log_1 100 = \frac{2}{\log 6}$

$$\log_6 100 = \frac{\log 100}{\log 6} = \frac{\log 10^2}{\log 6} = \frac{2(\log 10)}{\log 6} = \frac{2}{\log 6}$$

Example 2

Using Technology to Graph a Logarithmic Function

Check Your Understanding

- a) Use a graphing calculator to graph y = log_x.
 - b) Identify the intercepts and the equation of the asymptote of the graph, and the domain and range of the function.

- a) Use a graphing calculator to graph $y = \log_a x$.
- b) Identify the intercepts and the equation of the asymptote of the graph, and the domain and range of the function.

SOLUTION

 Use the change of base formula to change y = log_xx to a logarithmic function with base 10.

$$\log_{e} x = \frac{\log x}{\log 4}$$

Graph:
$$y = \frac{\log x}{\log 4}$$

402

Chapter 5: Exponential and Logarithmic Functions

DO NOT COPY. @P

b) Press 2nd TRACE 2 for the zero feature from the CALC menu. The x-intercept is 1.

b) Press 2nd TRACE 2 for the zero feature from the CALC menu. The x-intercept is 1.

Since $\log x$ is not defined for $x \leq 0$, there is no y-intercept.

The equation of the asymptote is x = 0.

The domain of the function is x > 0.

The range of the function is $y \in \mathbb{R}$.

THINK FURTHER

In Example 2, what other strategy could you use to verify the domain of the function?

x-int: x=1
y-int: none
asymptote: x=0
domain: x>0
range: y ∈ R

Transformations can be applied to the graph of a logarithmic function.

The Function $y - k = c \log_a d(x - h)$, a > 0, $c \neq 0$, $d \neq 0$

When the graph of $y = \log_x x$ is:

- stretched vertically by a factor of |c|
- stretched horizontally by a factor of $\frac{1}{|d|}$
- reflected in the x-axis when c < 0
- reflected in the y-axis when d < 0
- translated k units vertically
- translated h units horizontally

the equation of the image graph is: $y - k = c \log_a d(x - h)$, a > 0

The general transformation is: (x, y) corresponds to $\left(\frac{x}{d} + h, cy + k\right)$

Try #5, 7a (using Desmos)

Example 3

Transforming the Graph of a Logarithmic Function

- a) Create a table of values for y = log₀x.
- b) How is the graph of y = log₅(2x + 6) related to the graph of y = log₅x? Sketch these two graphs on the same grid.
- c) Identify the intercepts and the equation of the asymptote of the graph of y = log₃(2x + 6), and the domain and range of the function.

Check Your Understanding

- a) Create a table of values for y = log,x.
 - b) How is the graph of y = log₂2x - 1 related to the graph of y = log₂x? Sketch these two graphs on the same grid.

- c) Identify the intercepts and the equation of the asymptote of the graph of y = log₂2x - 1, and the domain and range of the function.
- $y = \log_2 x \iff 2^y = x$ $x \mid y$ $\frac{1}{1} = -2$ $\frac{1}{2} = -1$ $1 \mid 0$
 - b) The graphs of y=log_x and y = log_2x-1 are the same. Why? y = log_2x-1 y+1 = log_2x y+1 = log_2 + log_x y+1 = 1 + log_x y = log_x

c) x-int: x=1

y-int: none

asymptote: x=0

domain: x>0 range: $y \in \mathbb{R}$

Assignment: p. 405 # 2,5,7ab,8,9ab*, 11

* list transformations & characteristics (do not graph)

SOLUTION

a) To create the table of values, write $y = \log_a x$ as $3^y = x$.

х	У
<u>1</u> 9	-2
1 3	-1
1	0
3	1
9	2

b) Write $y = \log_5(2x + 6)$ as $y = \log_5 2(x + 3)$. Compare $y = \log_3 2(x + 3)$ with $y - k = c \log_5 d(x - h)$: k = 0, c = 1, d = 2, and h = -3

The graph of $y = \log_3 2(x + 3)$ is the image of the graph of $y = \log_5 x$ after a horizontal compression by a factor of $\frac{1}{2}$, then a translation of 3 units left.

Use the general transformation:

$$(x, y)$$
 corresponds to $\left(\frac{x}{d} + h, cy + k\right)$

The point (x, y) on $y = \log_{x} x$ corresponds to the point $\left(\frac{x}{2} - 3, y\right)$ on $y = \log_{x} 2(x + 3)$. Use the points (x, y) on $y = \log_{x} x$.

(x, y)	$\left(\frac{x}{2}-3,y\right)$
$\left(\frac{1}{9}, -2\right)$	$\left(-\frac{53}{18'} - 2\right)$
$(\frac{1}{3}, -1)$	$\left(-\frac{17}{6}, -1\right)$
(1, 0)	(-2.5, 0)
(3, 1)	(-1.5, 1)
(9, 2)	(1.5, 2)

c) From the graph of $y = \log_{5}(2x + 6)$:

The x-intercept is -2.5.

For the y-intercept, substitute x = 0 in $y = \log_{\epsilon}(2x + 6)$.

$$y = \log_5 6$$

$$y = \frac{\log e}{\log 2}$$

$$y = 1.6309...$$

The y-intercept is approximately 1.6.

The equation of the asymptote is x = -3.

The domain of the function is x > -3.

The range of the function is $y \in \mathbb{R}$.

(do not graph)

The domain of the function is x > -3. The range of the function is $y \in \mathbb{R}$.

404 Chapter 5: Exponential and Logarithmic Functions

DO NOT COPY. @P