5.5 The Laws of Logarithms

FOCUS Develop and use the laws of logarithms.

Get Started

Use the exponent laws to simplify each expression.
$2^{3} \cdot 2^{3}$
$=2^{5+3}$
$=2^{8}$
$=3^{8-2}$
$\frac{3^{1}}{3^{2}}$
$\frac{7^{3}}{7^{5}}$
$\left(7^{3}\right)^{2}$
$=7^{3-6}$
$=7^{5 \cdot 2}$
$=7^{-3}$
$=7^{10}$
or $\frac{1}{7^{3}}$

Construct Understanding

Use the exponent laws and the relationship between exponents and logarithms to complete each statement with a natural number. Describe your strategies. Use a calculator to check.

$$
\begin{array}{ll}
\log 2+\log 3=\log ? & \log 6=\log 2 \cdot 3 \\
\log 8-\log 2=\log ? & \log 4=\log 8 \div 2 \\
3 \log 2=\log ? & \log 8=\log 2^{3}
\end{array}
$$

For each statement above, write two more statements using the same operation.
Compare your results with those of your classmates.
Write rules for:

- adding two logarithms with the same base
- subtracting two logarithms with the same base
- multiplying a logarithm by an integer

8

Operations on logarithms with the same base obey the laws of logarithms.

Laws of Logarithms

When $x>0$ and $y>0$
Product law: $\quad \log _{k} x y=\log _{x} x+\log _{6} y, b>0, b \neq 1$
Quotient law: $\log _{5}\left(\frac{x}{y}\right)=\log _{6} x-\log _{6} y, b>0, b \neq 1$
Power law: $\quad \log _{v} x^{z}=k \log _{6} x, b>0, b \neq 1, k \in \mathbb{R}$

THINK FURTHER

In the power law for logarithms, why is $k \in \mathbf{R}$, while $b>0$, $b \neq 1$?

The definition of a logarithm can be used to prove that the laws above are true for all logarithms.

Here is a proof of the product law.

To prove that $\log _{y} x y=\log _{y} x+\log _{y} y$:
Let $\log _{6} x=m$ and $\log _{b} y=n \quad$ Apply the definition of a logarithm.
Then $x=b^{\pi} \quad y=b^{a}$

$$
\begin{aligned}
\text { So, } x y=b^{\pi} \cdot b^{E} & \text { Use the product rule for exponents. } \\
x y=b^{w+n} & \begin{array}{l}
\text { Write this exponential statement as } \\
\text { a logarithmic statement. }
\end{array} \\
\log _{x} x y=m+n & \text { Substitute for } m \text { and } n . \\
\log _{x} x y=\log _{k} x+\log _{y} y &
\end{aligned}
$$

The proofs of the other two laws of logarithms are in the Exercises.

Check Your Understanding

1. Simplify each expression. Use a calculator to verify the answer.
a) $\log 7+\log 8$
b) $5 \log 2$
c) $\log 80-\log 16$
a) $\log 7 \cdot 8=\log 56$
b) $\log 2^{5}=\log 32$
c) $\log \left(\frac{80}{16}\right)=\log 5$

Use a law of logarithms to simplify each expression.
Use a calculator to verify the answer.
a) $\log 50-\log 25$
b) $\log 5+\log 12$
c) $3 \log 4$

SOLUTION

a) Use the quotient law.

$$
\begin{aligned}
& \begin{aligned}
\log 50-\log 25 & =\log \left(\frac{50}{25}\right) \\
& =\log 2
\end{aligned} \\
& \text { Verify: } \log 50-\log 25=0.3010 \ldots \\
& \log 2=0.3010 \ldots
\end{aligned}
$$

b) Use the product law.

```
\(\log 5+\log 12=\log (5 \cdot 12)\)
    \(=\log 60\)
Verify: \(\log 5+\log 12=1.7781 \ldots\)
                        \(\log 60=1.7781 \ldots\)
```

c) Use the power law.
$3 \log 4=\log 4^{3}$

$$
=\log 64
$$

Verify: $3 \log 4=1.8061 \ldots$

$$
\log 4^{3}=1.8061 \ldots
$$

Example 2 Using the Laws of Logarithms to Simplify Expressions

Write each expression as a single logarithm.
a) $2 \log x-\log y$
b) $\frac{1}{2} \log x-3 \log y+2 \log z$
c) $2+\log _{4} 3$

SOLUTION

a) $2 \log x-\log y \quad$ Use the power law to write $2 \log x$ as $\log x^{2}$.
$=\log x^{2}-\log y \quad$ Use the quotient law.
$=\log \left(\frac{x^{2}}{y}\right)$
b) $\log x+2 \log y-4 \log z$
$=\log x+\log y^{2}-\log z^{4}$
$=\log \left(\frac{x y^{2}}{z^{4}}\right)$
b) $\frac{1}{2} \log x-3 \log y+2 \log z \quad$ Use the power law.
$=\log x^{\frac{1}{2}}-\log y^{3}+\log z^{2} \quad$ Use the quotient law.
$=\log \left(\frac{x^{\frac{1}{2}}}{y^{3}}\right)+\log z^{2} \quad$ Use the product law.
$=\log \left(\frac{x^{\frac{1}{2}} z^{2}}{y^{3}}\right)$
c) $2+\log _{4} 3$

Write 2 as a logarithm base 4:
$2=\log _{4} 4^{2}$, or $\log _{4} 16$
So, $2+\log _{4} 3=\log _{4} 16+\log _{4} 3$ Use the product law.

$$
\begin{aligned}
& =\log _{4}(16 \cdot 3) \\
& =\log _{4} 48
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
& \log _{2} 6-3 \\
= & \log _{2} 6-3 \log _{2} 2 \\
= & \log _{2} 6-\log _{2} 2^{3} \\
= & \log _{2} 6-\log _{2} 8 \\
= & \log _{2}\left(\frac{6}{8}\right) \\
= & \log _{2}\left(\frac{3}{4}\right)
\end{aligned}
$$

Example 3 Writing a Logarithm as a Sum or Difference of Logarithms

Write each expression in terms of $\log a, \log b$, and/or $\log c$.
a) $\log a^{2} c$
b) $\log \left(\frac{a^{2}}{b c^{2}}\right)$

SOLUTION

a) $\log a^{2} c$

Use the product law.
$=\log a^{2}+\log c$
$=2 \log a+\log c$
b) $\log \left(\frac{a^{2}}{b c^{3}}\right)$
$=\log a^{2}-\log b c^{2}$
$=2 \log a-\left(\log b+\log c^{3}\right)$
$=2 \log a-\log b-\log c^{3}$
$=2 \log a-\log b-3 \log c$

Check Your Understanding

3. Write each expression in terms of $\log a, \log b$, and/or $\log c$.
a) $\log \left(\frac{a}{b^{2}}\right)$
b) $\log \left(\frac{a^{2} b^{d}}{c}\right)$
a) $\begin{aligned} & \log a-\log b^{2} \\ = & \log a-2 \log b\end{aligned}$
b) $\log a^{2}+\log b^{1 / 3}-\log c$ $=2 \log a+\frac{1}{3} \log b-\log c$

