5.5 The Laws of Logarithms

FOCUS Develop and use the laws of logarithms.

Get Started

Use the exponent laws to simplify each expression.

Construct Understanding

Use the exponent laws and the relationship between exponents and logarithms to complete each statement with a natural number. Describe your strategies. Use a calculator to check.

$$log 2 + log 3 = log?$$
 $log 6 = log 2.3$
 $log 8 - log 2 = log?$ $log 4 = log 8 ÷ 2$
 $3 log 2 = log?$ $log 8 = log 2^3$

For each statement above, write two more statements using the same operation.

Compare your results with those of your classmates.

Write rules for:

- · adding two logarithms with the same base
- · subtracting two logarithms with the same base
- · multiplying a logarithm by an integer

Operations on logarithms with the same base obey the laws of logarithms.

Laws of Logarithms

Ø

When x > 0 and y > 0

Product law: $\log_b xy = \log_b x + \log_b y$, b > 0, $b \ne 1$

Quotient law: $\log_b \left(\frac{x}{y} \right) = \log_b x - \log_b y, b > 0, b \neq 1$

 $\log_b x^k = k \log_b x, b > 0, b \neq 1, k \in \mathbb{R}$ Power law:

THINK FURTHER

In the power law for logarithms, why is $k \in \mathbb{R}$, while b > 0, b ≠ 1?

The definition of a logarithm can be used to prove that the laws above are true for all logarithms.

Here is a proof of the product law.

To prove that $\log_{\nu} xy = \log_{\nu} x + \log_{\nu} y$:

Let $\log_{x} x = m$ and $\log_{x} y = n$ Apply the definition of a logarithm.

Then $x = b^m$ $y = b^a$

So, $xy = b^m \cdot b^n$ Use the product rule for exponents.

 $xy = b^{m+n}$ Write this exponential statement as

a logarithmic statement.

 $log_{\nu}xy = m + n$ Substitute for m and n.

 $\log_{t} xy = \log_{t} x + \log_{t} y$

The proofs of the other two laws of logarithms are in the Exercises.

Example 1

Applying the Laws of Logarithms to Logarithms with Base 10

Check Your Understanding

- Simplify each expression. Use a calculator to verify the answer.
 - a) log 7 + log 8
 - b) 5 log 2
 - c) log 80 log 16

- a) log 7.8 = log 56
 - b) $\log 2^5 = \log 32$
 - $c)\log(\frac{80}{16}) = \log 5$

Use a law of logarithms to simplify each expression. Use a calculator to verify the answer.

- a) log 50 log 25
- **b)** $\log 5 + \log 12$
- c) 3 log 4

SOLUTION

a) Use the quotient law.

$$log 50 - log 25 = log \left(\frac{50}{25}\right)$$

= $log 2$
Verify: $log 50 - log 25 = 0.3010...$
 $log 2 = 0.3010...$

Use the product law.

$$\log 5 + \log 12 = \log (5 \cdot 12)$$

= $\log 60$
Verify: $\log 5 + \log 12 = 1.7781...$
 $\log 60 = 1.7781...$

c) Use the power law.

$$3 \log 4 = \log 4^3$$
$$= \log 64$$

Verify:
$$3 \log 4 = 1.8061...$$

 $\log 4^3 = 1.8061...$

Example 2

Using the Laws of Logarithms to Simplify Expressions

Check Your Understanding

2. Write each expression as a single logarithm.

a)
$$\log x + 3 \log y$$

b)
$$\log x + 2 \log y - 4 \log z$$

a) logx + 3logy

$$= \log x + \log y^3$$
$$= \log xy^3$$

b) logx + 2logy - 4logz = logx + logy - log z

$$= \log x + \log y^2 - \log z^4$$

$$= \log \left(\frac{x y^2}{z^4} \right)$$

Write each expression as a single logarithm.

a)
$$2 \log x - \log y$$

b)
$$\frac{1}{2} \log x - 3 \log y + 2 \log z$$

SOLUTION

a) $2 \log x - \log y$ $= \log x^2 - \log y$

$$= \log \left(\frac{x^2}{y} \right)$$

Use the power law to write $2 \log x$ as $\log x^2$. Use the quotient law.

b)
$$\frac{1}{2} \log x - 3 \log y + 2 \log z$$
 Use the power law.
 $= \log x^{\frac{1}{2}} - \log y^3 + \log z^2$ Use the quotient law.
 $= \log \left(\frac{x^{\frac{1}{2}}}{3}\right) + \log z^2$ Use the product law.

$$= \log \left(\frac{x^{\frac{1}{2}}z^2}{y^3} \right)$$

c) $2 + \log_4 3$

Write 2 as a logarithm base 4:

$$2 = \log_4 4^2$$
, or $\log_4 16$

So,
$$2 + \log_4 3 = \log_4 16 + \log_4 3$$
 Use the product law.
= $\log_4 (16 \cdot 3)$
= $\log_4 48$

c)
$$\log_2 6 - 3$$

= $\log_2 6 - 3 \log_2 2$
= $\log_2 6 - \log_2 2^3$

$$= \log_2 6 - \log_2 8$$
$$= \log_2 \left(\frac{6}{8}\right)$$

$$= \log_2(\frac{3}{4})$$

Example 3

Writing a Logarithm as a Sum or Difference of Logarithms

Write each expression in terms of log a, log b, and/or log c.

a)
$$\log a^2 c$$

b)
$$\log\left(\frac{a^2}{bc^3}\right)$$

SOLUTION

a)
$$\log a^2c$$
 Use the product law.
 $= \log a^2 + \log c$ Use the power law.
 $= 2 \log a + \log c$

 $= 2 \log a - \log b - 3 \log c$

b)
$$\log \left(\frac{a^2}{bc^3}\right)$$
 Use the quotient law.
 $= \log a^2 - \log bc^3$ Use the power law and product law.
 $= 2 \log a - (\log b + \log c^3)$
 $= 2 \log a - \log b - \log c^3$ Use the power law.

Check Your Understanding

 Write each expression in terms of log a, log b, and/or log c.

a)
$$\log\left(\frac{\hat{a}}{\hat{b}^2}\right)$$
 b) $\log\left(\frac{\hat{a}^2\hat{b}^{\frac{1}{6}}}{\epsilon}\right)$

b)
$$\log a^2 + \log b^{4/2} - \log c$$

= $2\log a + \frac{1}{3}\log b + \log c$

Example 4

Using the Laws of Logarithms to Evaluate

Check Your Understanding

4. Evaluate each expression.

b)
$$2 \log_4 6 - 3 \log_4 3 + \log_4 12$$

Ø

$$= \log_9 6^3 - \log_9 72$$

$$= \log_9\left(\frac{216}{72}\right)$$

 $=\frac{1}{2}$

 $= |og_{4}6^{2} - |og_{4}3^{3} + |og_{4}12|$

$$= \log_4\left(\frac{6^2 \cdot 12}{3^3}\right)$$

= log4 16

= 210944

= 2

Evaluate each expression.

a)
$$2 \log_{1} 6 - \log_{2} 9$$

b)
$$\log_{2} 2 + 3 \log_{6} 6 - 4 \log_{2} 2$$

SOLUTION

a) 2 log₂6 - log₂9 Use the power law.

$$= \log_1 6^2 - \log_1 9$$

= log₂36 - log₂9 Use the quotient law.

$$= \log_2\left(\frac{36}{9}\right)$$

= log₂4 Write the number as a power of 2.

$$= \log_1 2^2$$
 Use $\log_b b^u = n$.

= 2

b) $\log_6 2 + 3 \log_6 6 - 4 \log_6 2$ Use the power law.

$$= \log_0 2 + \log_0 6^3 - \log_0 2^4$$

= log₀2 + log₀216 - log₀16 Use the product law.

$$= \log_{0}(2 \cdot 216) - \log_{0}16$$
 Use the

Use the quotient law.

$$= \log_0\left(\frac{2 \cdot 216}{16}\right)$$

 $= log_0 27$

Write the number as a power of 9.

$$= \log_9(9 \cdot 3)$$

$$= \log_9(9 \cdot 3)$$

$$= \log_0 \left(9 \cdot 9^{\frac{1}{2}}\right)$$

$$= \log_0 9^{\frac{1}{2}}$$

$$=\frac{3}{2}$$

Assignment: