5.4 Logarithms and the Logarithmic Function

FOCUS Investigate logarithmic functions and relate them to exponential functions.

Get Started

How are these graphs related?

y = x2
(0,0)
(1,1)

a x and y values are switched a reflection over the line y=x

⇒ These graphs are inverses of each other.

Construct Understanding

Complete the table of values below for $y = 2^x$. Use the completed table to graph $y = 2^x$ and its inverse. What are the equations of the asymptotes for the graphs? State the domain and the range of each function.

(8,3)

(4,-2)

The term **logarithm** is used to describe the inverse of a power. For example, the inverse of 10^x is the logarithm to the base 10 of x, which is written as $\log_{10} x$. We say: \log base 10 of x

Here is the graph of $y = 10^x$ and its inverse.

Each graph is a reflection of the other graph in the line y = x. The inverse of $y = 10^x$ is $y = \log_{10} x$.

To understand what a logarithm is, consider the coordinates of corresponding points on the graphs of these functions:

$$y = 10^{x}$$

$$y = \log_{10} x$$

x	у	Points
0	10° = 1	(0, 1)
1	101 = 10	(1, 10)
2	10 ² = 100	(2, 100)

x	у	Points			
1	log ₁₀ 1 = 0	(1, 0)			
10	log ₁₀ 10 = 1	(10, 1)			
100	log ₁₀ 100 = 2	(100, 2)			

.

 $log_{10}100 = 2$ means that 10 is raised to the power 2 to get 100; that is, $10^2 = 100$

Definition of a Logarithm

The logarithm of a number is an exponent.

 $log_{a}c$ is the power to which b is raised to get c.

The base of the logarithm is the same as the base of the power.

When $\log_b c = a$, then $c = b^*$, where b > 0, $b \ne 1$, c > 0

$$log_b c = a \Leftrightarrow b^a = c$$

= the base doesn't change

m the values "a" and "c" switch between input and output

Example 1

Writing Expressions in Different Forms

a) Write each exponential expression as a logarithmic expression.

i)
$$2^3 = 32$$

ii)
$$3^{-4} = \frac{1}{81}$$

b) Write each logarithmic expression as an exponential expression.

i)
$$\log_5 81 = 4$$

ii)
$$\log_3 125 = 3$$

iii)
$$log_a 1 = 0$$

SOLUTION

Use the definition of a logarithm.

a) i)
$$2^3 = 32$$

ii)
$$3^{-4} = \frac{1}{81}$$

The base is 2. The logarithm is the exponent 5. So, 5 = log, 32

The base is 3. The logarithm is the exponent -4. So, $-4 = \log(\frac{1}{81})$ The base is 7. The logarithm is the exponent 0. So, 0 = log₀1

b) i)
$$\log_6 81 = 4$$

ii)
$$\log_{6} 125 = 3$$

iii)
$$\log_6 1 = 0$$

The base is 3. The exponent is 4. So, $81 = 3^4$

The base is 5. The exponent is 3. So, $125 = 5^3$ The base is 6. The exponent is 0. So, $6^{\circ} = 1$

Since our number system is based on powers of 10, $\log_{10}x$ is called the common logarithm of x. When logarithms to base 10 are written, the base is often not shown; that is, $\log_{10}x$ is written as $\log x$.

On scientific and graphing calculators, use the <u>LOG</u> key to enter a logarithm with base 10.

For logarithms to bases other than 10, other strategies are used to evaluate them.

Consider these logarithms:

log, 25 is the power to which 2 is raised to get 25, which is 3.

 $So_{3} log_{3} = 3$

log, 4° is the power to which 4 is raised to get 4°, which is 6.

 $So_s log_4 4^6 = 6$

These examples illustrate this general result:

$log_b b^u = n$

This equation and a related equation can be derived from the fact that

 $f(x) = \log_b x$ and $g(x) = b^x$ are inverses:

$$f(g(n)): \log_{\epsilon} b^n = n$$

$$g(f(n)): b^{\log_b n} = n$$

These equations can be used to simplify expressions involving exponents or logarithms.

Check Your Understanding

 a) Write each exponential expression as a logarithmic expression.

i)
$$3^3 = 27$$

ii)
$$5^{-2} = \frac{1}{25}$$

iii)
$$4^2 = 1$$

 b) Write each logarithmic expression as an exponential expression.

i)
$$\log_{7}49 = 2$$

ii)
$$\log_4\left(\frac{1}{64}\right) = -3$$

ii)
$$\log_{10} \left(\frac{1}{10\ 000} \right) = -4$$

ii)
$$\log_5(\frac{1}{25}) = -2$$

ii)
$$4^{-3} = \frac{1}{64}$$

$$|iii)|O^{-4} = \frac{1}{10000}$$

Check Your Understandin

2. Evaluate each logarithm.

b)
$$\log_{1}\left(\frac{1}{216}\right)$$

a)
$$3125 = 5^5$$

$$\log_5 3125 = \log_5 \frac{5}{5} = 5$$

b)
$$216 = 6^3 : \frac{1}{216} = 6^{-3}$$

$$\log_6\left(\frac{1}{216}\right) = \log_66^{-3} = -3$$

$$2\sqrt[3]{2} = 2 \cdot 2^{\sqrt{3}} = 2^{4/3}$$

$$2\sqrt[3]{2} = 2 \cdot 2^{\sqrt{3}} = 2^{4/3}$$

$$\log_{1}(\sqrt[3]{4})$$

$$2^{4/3} = (8^{1/3})^{4/3} = 8^{4/9}$$

$$\log_8(2\sqrt[3]{2}) = \log_8 8^{4/9}$$

= $\frac{4}{9}$

Assignment:

Example 2

Evaluating Logarithms

Evaluate each logarithm.

b)
$$\log_4\left(\frac{1}{32}\right)$$

SOLUTION

a)
$$log_3729$$

 $log_3729 = log_33^6$

Write 729 as a power of 3.

$$= 6$$

b) $\log_4(\frac{1}{32})$

Write $\frac{1}{32}$ as a power of 2.

$$\log_4\left(\frac{1}{32}\right) = \log_4(2^{-5})$$
 Write 2^{-5} with a base of 4.
 $= \log_4(2^2)^{-\frac{1}{2}}$
 $= \log_4(2^{-\frac{1}{2}})^{-\frac{1}{2}}$

$$= \log_4 4^{-\frac{3}{2}}$$

$$=-\frac{5}{2}$$
, or -2.5

Write $\sqrt[3]{4}$ as a power of 2.

$$log_3(\sqrt[3]{4}) = log_24^{\frac{1}{5}}$$

= $log_22^{\frac{2}{5}}$
= $\frac{2}{3}$

In Example 2, the logarithm of each number could be determined because the number could be written as a power of the base of the logarithm. If a number cannot be written this way, benchmarks can be used to estimate the value of a logarithm.

Example 3

Using Benchmarks to Estimate the Value of a Logarithm

To the nearest tenth, estimate the value of log, 10.

SOLUTION

log, 10 has base 2, so use the powers of 2 closest to 10 as benchmarks:

$$2^3 = 8$$
 and $2^4 = 16$

$$\log_2 2^3 < \log_2 10 < \log_2 2^4$$
 $\log_b b^n = n$

So,
$$3 < \log_2 10 < 4$$

10 is closer to 8, so log, 10 is likely closer to 3.

An estimate is: $log_1 10 = 3.3$

Check the estimate.

Calculate: 2^{5,3} = 9.8491... This is less than 10, but close to 10.

Calculate: 25.4 = 10.5560... This is greater than 10, but not as close.

So, $log_2 10 = 3.3$

Check Your Understanding

3. To the nearest tenth, estimate the value of log, 100.

estimate: 2.8

check:
$$5^{2.8} = 90.597...$$

Example 4

Identifying the Characteristics of the Graph of a Logarithmic Function

- a) Graph y = log_xx.
- b) Identify the intercepts, the equations of any asymptotes, and the domain and range of the function.

equivalent to 3 = x SOLUTION

a) $y = \log_2 x$ is the inverse of $y = 3^x$, so construct a table of values for $y = 3^x$, then interchange the coordinates for a table of values for $y = \log_b x$.

For
$$y = 3^x$$

For
$$y = \log_2 x$$

x	У
-2	1 9
-1	1/3
0	1
1	3
2	9

@P DO NOT COPY.

_	_
x	У
1 9	-2
1 3	-1
1	0
3	1
9	2

	2.	у	У	=	log	X				
	É		_	-	-	=	F	F	F	×
	0	7	2		4		В		8	
-	-2									

Check Your Understanding

- a) Graph y = log x.
 - b) Identify the intercepts, the equations of any asymptotes, and the domain and range of the function.

$$y = log_{4}x \Leftrightarrow 4^{y} = x$$
 $y = 4^{x}$
 $y = 4^{x}$
 $y = log_{4}x$
 $x \mid y$
 $y = log_{4}x$
 $y = 1$
 $y = log_{4}x$
 $y = 1$
 y

b) The graph does not intersect the y-axis, so it does not have a y-intercept.

The graph has x-intercept 1.

The y-axis is a vertical asymptote; its equation is x = 0.

The domain of the function is x > 0.

The range of the function is $y \in \mathbb{R}$.

The graph in Example 4 illustrates the characteristics of a logarithmic function.

Definition of a Logarithmic Function

The logarithmic function $y = \log_b x$, b > 0, $b \ne 1$, is the inverse of the exponential function $y = b^x$. The domain of $y = \log_b x$ is x > 0.

THINK FURTHER

In the definition of a logarithmic function, why is $b \neq 1$?

Assignment: p.380 #2,3,11,13

Ø

Discuss the Ideas

1. What is a logarithm? Explain what log, 25 means.

Ø

Ø

Why is it not possible to determine log₃(-27)?

Ø

3. If log_ba < 0 and b > 1, what can you say about a?