5.4 Logarithms and the Logarithmic Function

FOCUS Investigate logarithmic functions and relate them to exponential functions.

Get Started

How are these graphs related?

Construct Understanding

Complete the table of values below for $y=2^{x}$.
Use the completed table to graph $y=2^{x}$ and its inverse.
What are the equations of the asymptotes for the graphs?
State the domain and the range of each function.

$y=2^{z}$	
x	y
-2	$1 / 4$
-1	$1 / 2$
0	1
1	2
2	4
3	8

$\left(\frac{1}{4},-2\right)$
$\left(\frac{1}{2},-1\right)$
$(1,0)$
$(2,1)$
$(4,2)$
$(8,3)$

The term logarithm is used to describe the inverse of a power. For example, the inverse of 10° is the logarithm to the base 10 of x, which is written as $\log _{10} x$. We say: \log base 10 of x

Here is the graph of $y=10^{\circ}$ and its inverse.

Each graph is a reflection of the other graph in the line $y=x$.
The inverse of $y=10^{z}$ is $y=\log _{10} x$.
To understand what a logarithm is, consider the coordinates of corresponding points on the graphs of these functions:
$y=10^{2}$

\boldsymbol{x}	\boldsymbol{y}	Points
0	$10^{0}-1$	$(0,1)$
1	$10^{1}-10$	$(1,10)$
2	$10^{2}-100$	$(2,100)$

$$
y=\log _{1 v^{2}} x
$$

\boldsymbol{x}	\boldsymbol{y}	Points
1	$\log _{v 2} 1=0$	$(1,0)$
10	$\log _{v 2} 10-1$	$(10,1)$
100	$\log _{v 3} 100-2$	$(100,2)$
\uparrow		
\uparrow		

$\log _{10} 100=2$ means that 10 is raised to the power 2 to get 100 ; that is, $10^{2}=100$

Definition of a Logarithm

The logarithm of a number is an exponent.
$\log _{4} c$ is the power to which b is raised to get c.
The base of the logarithm is the same as the base of the power.
When $\log _{6} c=a$, then $c=b^{a}$, where $b>0, b \neq 1, c>0$

$$
\log _{b} c=a \Leftrightarrow b^{a}=c
$$

- the base doesnt change
a the values " a " and " c " switch between inpul and output

Example 1 Writing Expressions in Different Forms

a) Write each exponential expression as a logarithmic expression.
i) $2^{3}=32$
ii) $3^{-4}=\frac{1}{81}$
iii) $7^{\circ}=1$
b) Write each logarithmic expression as an exponential expression.
i) $\log _{8} 81=4$
ii) $\log _{3} 125=3$
iii) $\log _{e} 1=0$

SOLUTION

Use the definition of a logarithm.
a) i) $2^{3}=32$
ii) $3^{-4}=\frac{1}{81}$
iii) $7^{*}=1$

The base is 2 .
The logarithm is the exponent 5 .
So, $5=\log _{3} 32$

The base is 3 .
The logarithm is the exponent -4. So, $-4=\log \left(\frac{1}{81}\right)$

The base is 7 . The logarithm is the exponent 0 . So, $0=\log _{0} 1$
b) i) $\log _{9} 81=4$

The base is 3 . The exponent is 4 . So, $81=3^{4}$
ii) $\log _{8} 125=3$

The base is 5 .
The exponent is 3 .
So, $125=5^{3}$
iii) $\log _{8} 1=0$

The base is 6 .
The exponent is 0 . So, $6^{\circ}=1$

Since our number system is based on powers of $10, \log _{10} x$ is called the common logarithm of x. When logarithms to base 10 are written, the base is often not shown; that is, $\log _{00} x$ is written as $\log x$.
On scientific and graphing calculators, use the प06 key to enter a logarithm with base 10 .

For logarithms to bases other than 10, other strategies are used to evaluate them.
Consider these logarithms:
$\log _{0} 2^{3}$ is the power to which 2 is raised to get 2^{3}, which is 3 .
So, $\log _{2} 2^{2}=3$
$\log _{4} 4^{8}$ is the power to which 4 is raised to get 4^{8}, which is 6 .
So, $\log _{4} 4^{4}=6$
These examples illustrate this general result:

$$
\log _{b} b^{\mathrm{e}}=n
$$

This equation and a related equation can be derived from the fact that $f(x)=\log _{t} x$ and $g(x)=b^{z}$ are inverses:
$f(g(n)): \log _{6} b^{n}=n$
$g(f(n)): b^{b_{5} v_{5}}=n$
These equations can be used to simplify expressions involving exponents or logarithms.

Check Your Understanding

1. a) Write each exponential expression as a logarithmic expression.
i) $3^{3}=27$
ii) $5^{-2}=\frac{1}{25}$
iii) $4^{4}=1$
b) Write each logarithmic expression as an exponential expression.

$$
\text { i) } \log _{3} 49=2
$$

ii) $\log _{4}\left(\frac{1}{64}\right)=-3$
iii) $\log _{10}\left(\frac{1}{10000}\right)=-4$
1.a) i) $3_{\substack{3^{\text {answer }} \\ \text { base input }}}^{27} \quad \log _{3} 27=3$
ii) $\log _{5}\left(\frac{1}{25}\right)=-2$
iii) $\log _{4} 1=0$
b) i) $\log _{7} 49=2 \quad 7^{2}=49$
base
ii) $4^{-3}=\frac{1}{64}$
iii) $10^{-4}=\frac{1}{10000}$

$$
\begin{array}{l|l|}
\log _{b} b^{n}=n & \text { Example } 2
\end{array} \text { Evaluating Logarithms }
$$

Check Your Understanding

2. Evaluate each logarithm.
a) $\log _{5} 3125$
b) $\log _{2}\left(\frac{1}{216}\right)$
c) $\log _{3}(2 \sqrt[3]{2})$

$$
\begin{aligned}
& \text { a) } 3125=5^{5} \\
& \log _{5} 3125=\log _{5} 5^{5}=5
\end{aligned}
$$

$$
\text { b) } 216=6^{3} \therefore \frac{1}{216}=6^{-3}
$$

$$
\log _{6}\left(\frac{1}{216}\right)=\log _{6} 6^{-3}=-3
$$

$$
\text { c) } \log _{8}(2 \sqrt[3]{2})
$$

$$
2 \sqrt[3]{2}=2 \cdot 2^{1 / 3}=2^{4 / 3}
$$

$$
2=\sqrt[3]{8}=8^{1 / 3}
$$

$$
\begin{gathered}
2^{4 / 3}=\left(8^{1 / 3}\right)^{4 / 3}=8^{4 / 9} \\
\log _{8}(2 \sqrt[3]{2})=\log _{8} 8^{4 / 9} \\
=4
\end{gathered}
$$

$$
=\frac{4}{9}
$$

Assignment:
p. 380 \# 2, 5, 6a, 7, 9

Evaluate each logarithm.
a) $\log _{9} 729$
b) $\log _{4}\left(\frac{1}{32}\right)$
c) $\log _{2}(\sqrt[3]{4})$

SOLUTION

a) $\log _{8} 729 \quad$ Write 729 as a power of 3 .

$$
\log _{8} 729=\log _{3} 3^{6}
$$

$$
=6
$$

b) $\log _{4}\left(\frac{1}{32}\right) \quad$ Write $\frac{1}{32}$ as a power of 2 .

$$
\begin{aligned}
\log _{4}\left(\frac{1}{32}\right) & =\log _{4}\left(2^{-5}\right) \quad \text { Write } 2^{-5} \text { with a base of } 4 . \\
& =\log _{4}\left(2^{1}\right)^{-\frac{3}{2}} \\
& =\log _{4} 4^{-\frac{3}{2}} \\
& =-\frac{5}{2}, \text { or }-2.5
\end{aligned}
$$

c) $\log _{2}(\sqrt[3]{4}) \quad$ Write $\sqrt[3]{4}$ as a power of 2 .
$\log _{2}(\sqrt[3]{4})=\log _{2} 4$
$=\log _{2} 2^{\frac{2}{3}}$
$=\frac{2}{3}$

In Example 2, the logarithm of each number could be determined because the number could be written as a power of the base of the logarithm. If a number cannot be written this way, benchmarks can be used to estimate the value of a logarithm.

Example 3 Using Benchmarks to Estimate the Value of a Logarithm

To the nearest tenth, estimate the value of $\log _{2} 10$.

SOLUTION

$\log _{1} 10$ has base 2 , so use the powers of 2 closest to 10 as benchmarks: $2^{3}=8$ and $2^{4}=16$
$\log _{2} 2^{3}<\log _{2} 10<\log _{2} 2^{4}$
So, $3<\log _{2} 10<4$
10 is closer to 8 , so $\log _{2} 10$ is likely closer to 3 .
An estimate is: $\log _{1} 10 \doteq 3.3$
Check the estimate.
Calculate: $2^{33}=9.8491 \ldots$ This is less than 10 , but close to 10 .
Calculate: $2^{3,4}=10.5560 \ldots$ This is greater than 10 , but not as close.
$\mathrm{So}, \log _{1} 10 \doteq 3.3$

Check Your Understanding
3. To the nearest tenth, estimate the value of $\log _{9} 100$.
(8) $5^{2}=25 ; 5^{3}=125$

$$
\begin{gathered}
\log _{5} 5^{2}<\log _{5} 100<\log _{5} 5^{3} \\
2<\log _{5} 100<3
\end{gathered}
$$

estimate: 2.8
check: $5^{2.8} \doteq 90.597 \ldots$
$5^{2.9} \doteq 106.417 \ldots$
$\log _{5} 100 \doteq 2.9$

Example 4 Identifying the Characteristics of the Graph of a Logarithmic Function

Check Your Understanding

a) Graph $y=\log _{0} x$.
b) Identify the intercepts, the equations of any asymptotes, and the domain and range of the function.

SOLUTION equivalent to $3^{y}=x$
a) $y=\log _{5} x$ is the inverse of $y=3^{2}$, so construct a table of values for $y=3^{*}$, then interchange the coordinates for a table of values for $y=\log _{1} x$.

For $y=3^{*}$	
\boldsymbol{x}	\boldsymbol{y}
-2	$\frac{1}{9}$
-1	$\frac{1}{3}$
0	1
1	3
2	9

For $y=\log _{y} x$	
\boldsymbol{x}	\boldsymbol{y}
$\frac{1}{9}$	-2
$\frac{1}{3}$	-1
1	0
3	1
9	2

4. a) $\operatorname{Graph} y=\log x$.
b) Identify the intercepts, the equations of any asymptotes, and the domain and range of the function.

$$
\begin{aligned}
& \text { \& } y=\log _{4} x \Leftrightarrow 4^{y}=x \\
& \begin{aligned}
& y=4^{x^{\circ}} \text {. inverse } \\
& y=\log _{4} y
\end{aligned}
\end{aligned}
$$

Assignment: p. 380 \# $2,3,11,13$
b) The graph does not intersect the y-axis, so it does not have a y-intercept.
The graph has x-intercept 1 .
The y-axis is a vertical asymptote; its equation is $x=0$.
The domain of the function is $x>0$.
The range of the function is $y \in \mathbb{R}$.

The graph in Example 4 illustrates the characteristics of a logarithmic function.

Definition of a Logarithmic Function

The logarithmic function $y=\log _{6} x, b>0, b \neq 1$, is the inverse of the exponential function $y=b^{\circ}$.
The domain of $y=\log _{x} x$ is $x>0$.

THINK FURTHER

$$
\text { In the definition of a logarithmic function, why is } b \neq 1 \text { ? }
$$

(1) $\quad \log _{1} x=y \Leftrightarrow 1^{y}=x$
$\therefore x=1$ for all values of y
This is a vertical line which is not a function. $\therefore y=\log _{1} x$ is not a function.

Discuss the Ideas

1. What is a logarithm? Explain what $\log _{9} 25$ means.

θ

2. Why is it not possible to determine $\log _{9}(-27)$?
θ
3. If $\log _{\natural} a<0$ and $b>1$, what can you say about a ? θ
