

5.4 Functions

Math 10 Functions

Relations are sets of ordered pairs. There are no restrictions on the input/output values. Relations can be divided into two categories: functions and non-functions.

∴ non-function These graphs all fail the vertical line test.

If a relation has exactly one *y*-value (output) for every *x*-value (input), then it is called a **function**.

Graphs:

Examples of **functions**:

Set of ordered pairs: $\{(-8, 2), (-3, -1), (0, 7), (6, -4), (10, 5)\}$ - x-values/inputs are all different .: function

Table of Values:

x y -1 1 2 4 3 7 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	all different ∴ function		These	graphs all pass	the vertical line	test.
x y -1 1 2 4 3 7 6 4			-6 ± -8 ±	-4	-4	-6
x y -1 1 2 4 3 7	6	4	41	-2	2	-2 +
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	7	-8 -6 -4 -2 -2 2 4 6 8	× 1 × 2	4 -2 2 4	-6 -4 2 + 2 4 6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	4	4 + 1	2	2	2
x y	-1	1	\ ^*\pm /	1 1	4	4
	x	y	<u></u>			6 ⁴ y

Vertical Line Test

The vertical line test is used to see if a graph represents a function. If any vertical line intersects the graph at more than one point, the relation is not a function.

Function Notation

Functions can be written using function notation. The function y = 4x + 1 is written as f(x) = 4x + 1. The name of the function is f, with a variable name of x. In this example, 4x + 1 is the rule that assigns a unique value to y for each value of x. It takes any input value for x, multiplies it by 4, and adds 1 to give the result. f(x) is read as "f of f" or "f at f".

f(2) = 4(2) + 1 = 9. This result tells us that when x = 2, the value of the function is 9. The point (2, 9) is on the graph of the function.

Example: The function F(C) = 1.8C + 32 is used to convert a temperature in degrees Celsius to degrees Fahrenheit.

a) Determine F(25). What does your answer mean?

b) Determine C so that F(C) = 100.

100 = 1.8C + 32
-32

$$68 = 1.8C$$

 $1.8 = 1.8C$
 $1.8 = 1.8C$
 $1.8 = 1.8C$
 $1.8 = 1.8C$
 $1.8 = 1.8C$

Example: Write the relation y = 3x - 1 in function notation using f for the name of the function.

$$f(x) = 3x - 1$$

Determine the output when the input is 12.

Determine
$$f(12)$$
. = x
 $f(12) = 3(12) - 1$
= 36 - 1
= 35 The output is 35.

Determine the value of x if f(x) = 53.

$$53 = 3x - 1
5\frac{1}{3} = \frac{3x}{3}
18 = x \rightarrow \int(18) = 53$$

Assignment: p.128 #1, 2, 4-7