5.3 **Solving Exponential Equations**

FOCUS Solve problems by modelling situations with exponential equations.

Get Started

Solve the equation $2x^2 - x - 3 = 0$ algebraically. How could you solve it graphically?

$$x = -1, 1.5$$

Construct Understanding

Solve this equation in two ways: $2^x = 32$

Can you use the same two strategies to solve this equation? $2^x = 12$ Explain your response.

Solve the equation and write the root to the nearest hundredth.

THINK FURTHER

Is it possible for 2° to be equal to any real number?

2 can be equal to any real number greater than 0.

Chapter 5: Exponential and Logarithmic Functions

DO NOT COPY. @P

Example 3

Solving a Problem Involving Exponential Growth

Check Your Understanding

3. A principal of \$1500 is invested at 4% annual interest, compounded quarterly. To the nearest quarter of a year, when will the amount be \$2500?

A principal of \$1000 is invested at 6% annual interest, compounded monthly. To the nearest tenth of a year, when will the amount be \$1400?

SOLUTION

Use: $A = A_0 \left(1 + \frac{i}{n}\right)^{nt}$, where t is the time in years since the principal

was invested

Substitute:
$$A = 1400, A_0 = 1000, i = 0.06, n = 12$$

$$1400 = 1000 \left(1 + \frac{0.06}{12}\right)^{12}$$

Since both sides of the equation cannot be written with the same base, use a graphing calculator to graph a related function.

Graph
$$y = 1000 \left(1 + \frac{0.06}{12}\right)^{12x} - 1400$$
, then determine

the approximate zero of the function: 5.6218786

The amount will be \$1400 in approximately 5.6 years.

It will take approximately 12.75 years.

:. exponential growth

Atmospheric pressure decreases by about 12% for every 1 km increase in altitude. At sea level, atmospheric pressure is approximately 101.3 kilopascals (kPa).

So, at 1 km altitude, the pressure in kilopascals is:

88% of 101.3 = 101.3(0.88)

At 2 km, the pressure in kilopascals is:

 $88\% \text{ of } 101.3(0.88) = 101.3(0.88)^2$

At 3 km, the pressure in kilopascals is:

 $88\% \text{ of } 101.3(0.88)^2 = 101.3(0.88)^3$

This pattern continues.

At an altitude of h kilometres, the pressure, P kilopascals, is modelled by the function: $P = 101.3(0.88)^k$

The function $P = 101.3(0.88)^k$ is an example of exponential decay.

Exponential Decay

A function that models exponential decay has the form: $y = ak^{bc}$ where $0 < k^b < 1$, and $a \in \mathbb{R}$, $b \in \mathbb{R}$, k > 0k is the decay factor.

Example 4

Solving a Problem Involving Exponential Decay

The function $P = 101.3(0.88)^{k}$ models the atmospheric pressure, P kilopascals, at an altitude of h kilometres. To the nearest kilometre, at what altitude is the atmospheric pressure only 10 kPa?

SOLUTION

Use:
$$P = 101.3(0.88)^k$$
 Substitute: $P = 10$
 $10 = 101.3(0.88)^k$

Use a graphing calculator to graph a related function. Graph $y = 101.3(0.88)^x - 10$, then determine the approximate zero of the function: 18.113434

The atmospheric pressure is 10 kPa at approximately 18 km altitude.

Discuss the Ideas

What is an exponential equation?

2. How do you identify whether a given function models exponential decay or exponential growth?

Check Your Understanding

- 4. If the cabin pressure in an airplane is less than 70 kPa, passengers can suffer altitude sickness. To the nearest kilometre, at what altitude is the atmospheric pressure 70 kPa?
- $y = 101.3(0.88)^{x}$ y = 70

.. The atmospheric pressure is 70 kPa at an attitude of approximately 3km.

Assignment:
p. 366 # 11ac, 12, 13a) i, iv
(use Desmos)

363

5.3 Solving Exponential Equations

@P DO NOT COPY.