MATH LAB

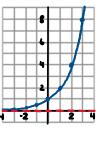
5.1 Graphing Exponential Functions

FOCUS Investigate the graphs of exponential functions.

Get Started

Evaluate each power.

$$5^{3} = 5 \times 5 \times 5 \qquad 2^{-3} = \left(\frac{1}{2}\right)^{3} \qquad 4^{9} = 1 \qquad \left(\frac{1}{3}\right)^{-2} = \left(\frac{3}{1}\right)^{2}$$

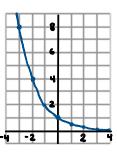

$$= \frac{1^{3}}{2^{3}} \qquad -4^{9} = -1 \qquad \qquad = \frac{3^{2}}{1^{3}}$$

$$= \frac{1}{8} \qquad (-4)^{9} = 1 \qquad \qquad = 9$$

Construct Understanding

A. Complete the table of values for the function y = 2*. Graph the function. Describe the graph; include characteristics such as intercepts, equations of the asymptotes, domain, and range.

x	$y=2^x$	
-3	18	
-2	14	
-1	1 2	
0	1	4 3
1	2	
2	4	
3	8	



x-intercept: none domain: ExeR3

y-intercept: y=1 range: \(\xi\)y>0, y \(\xi\)?
asymptote: y=0

B. Repeat Part A for the function $y = \left(\frac{1}{2}\right)^x$.

x	$y = \left(\frac{1}{2}\right)^x$
-3	8
-2	4
-1	2
0	1
1	1 2 4
2	1 4
3	18

x-intercept: none domain: ExeR3

y-intercept: y=1 range: \(\xi\)y>0, y \(\xi\)

asymptote: y=0

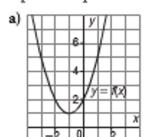
C. How are the functions in Parts A and B alike? How are they different?

Both functions have the same y-intercept. (y=1)Both functions are entirely above the x-axis. (no x-intercept) Same domain $\{x \in \mathbb{R}\}$ and range $\{y \mid y > 0, y \in \mathbb{R}\}$ Same asymptote (y=0)

The functions are reflections in the y-axis. $y = 2^x$ rises to the right; $y = (\frac{1}{2})^x$ falls to the right

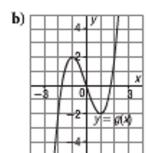
Assess Your Understanding

 Use graphing technology. Graph each function below, then complete the table.

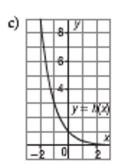

Function	x-intercept	<i>y</i> -intercept	Equation of asymptote	Domain	Range
y = 4 ^x	none	1	y = 0	ExeRS	Eyly >0, yER3
$y = \left(\frac{5}{3}\right)^x$	none	1	y=o	ExeR?	Eyly70,yeR}
$y = \left(\frac{1}{3}\right)^x$	none	1	y = 0	¿xer?	Eyly 70, yer?
$y = \left(\frac{2}{5}\right)^{s}$	none	1	y=0	ExeR3	{yly>0,yeR}

Ø

2. The functions in Construct Understanding and question 1 are exponential functions. Why do you think this name is appropriate?


These functions have a variable exponent.

3. The graphs of three functions are shown. Which graphs might represent exponential functions? How do you know?


Not exponential — the graph does not continually rise (or continually decrease)

(This is a quadratic function.)

Not exponential

(This is a polynomial function.)

Exponential

- continuous decrease
- asymptote at y=0

 Could each table of values describe an exponential function? Justify your answer.

2)			* compare each ratio	
a)	x	у	J-Yes, these ratios are the same.	
	-2	0.01	This table represents the function $f(x) = 10^{-10}$	X
	-1	0.1	x = 0	•
	0	1		
	1	10	XIO	
	2	100	x 10	

b)
$$\frac{x}{y}$$
 $\frac{y}{-2}$ $\frac{25}{25}$ $\frac{x \frac{1}{5}}{2}$ $\frac{x \frac{1}{5}}{2}$ $\frac{x \frac{1}{5}}{2}$ $\frac{x \frac{1}{5}}{2}$ $\frac{x \frac{1}{5}}{2}$ $\frac{x \frac{1}{5}}{2}$ $\frac{x \frac{1}{5}}{2}$

c)			
-/	x	у	Parries III. as alle a 100
	-2	9	Because these ratios are different,
	-1	4	This lable upes not represent an
	0	1	exponential function.
	1	0	
	2	1	no multiplier exists

ANSWERS

3. graph c 4. a) yes b) yes c) no

@P DO NOT COPY.

5.1 Math Lab: Graphing Exponential Functions

343