4.2 Combining Functions Algebraically

FOCUS Write the equations of functions that are the sum, difference, product, or quotient of other functions, then determine their domains and ranges.

Get Started

Given $f(x) = 3 - 4x + 5x^2$, determine each value:

$$f(0) f(2) f(-1)$$

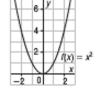
$$= 3 - 4(0) + 5(0)^{3} = 3 - 4(2) + 5(2)^{3} = 3 - 4(-1) + 5(-1)^{3}$$

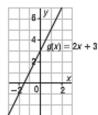
$$= 3 - 8 + 20 = 3 + 4 + 5$$

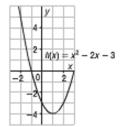
$$= 15 = 12$$

Construct Understanding

For the graphs below, how is the function h(x) a combination of the functions f(x) and g(x)? Use algebra to verify the answer.







$$h(x) = x^2-2x-3$$

= $x^2 - (2x+3)$
= $f(x) - g(x)$

Given two functions f(x) and g(x), another function can be defined by adding, subtracting, or multiplying f(x) and g(x).

Consider coordinates of corresponding points.

· Adding functions

The sum of functions f(x) and g(x) is f(x) + g(x); this may also be written as (f + g)(x).

For h(x) = f(x) + g(x), to determine the value of h(2), add f(2) and g(2).

From the graph, f(2) + g(2) = 2 - 1

$$= 1$$

= $h(2)$

The domain of f(x) is: $x \ge -2$ The domain of g(x) is: $x \in \mathbb{R}$ The domain of h(x) is: $x \ge -2$

The difference of functions f(x) and g(x) is f(x) - g(x); this may also be written as (f - g)(x).

For d(x) = f(x) - g(x), to determine the value of d(2), subtract g(2) from f(2).

From the graph,
$$f(2) - g(2) = 2 - (-1)$$

$$= 3$$
$$= d(2)$$

The domain of f(x) is: $x \ge -2$ The domain of g(x) is: $x \in \mathbb{R}$ The domain of d(x) is: $x \ge -2$

The product of functions f(x) and g(x) is $f(x) \cdot g(x)$; this may also be written as $(f \cdot g)(x)$.

For $p(x) = f(x) \cdot g(x)$, to determine the value of p(2), multiply f(2) and g(2).

From the graph,
$$f(2) \cdot g(2) = (2)(-1)$$

= -2

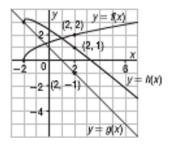
$$= -2$$

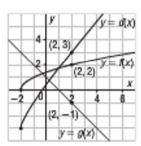
= $p(2)$

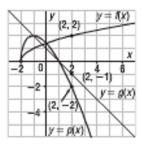
The domain of f(x) is: $x \ge -2$

The domain of g(x) is: $x \in \mathbb{R}$

The domain of p(x) is: $x \ge -2$







The graphs above illustrate that when two functions, f(x) and g(x), are added, subtracted, or multiplied, the domain of the new function is the set of values of x that are common to the domains of f(x) and g(x).

Example 1

Writing the Equation of a Function that Is a Combination of Functions

Check Your Understanding

- **1.** Use f(x) = x + 2 and g(x) = |x|.
 - a) State the domain and range of f(x) and of g(x).
 - b) Given h(x) = f(x) + g(x), write an explicit equation for h(x), then determine its domain and range.
 - c) Given p(x) = f(x) · g(x), write an explicit equation for p(x), then determine its domain and range.

- 0) f(x): D: XER R: yER
 - g(x): D: x∈R R: y≥0
- b) h(x) = f(x) + g(x)= $\frac{x}{x} + 2 + |\frac{x}{x}|$
 - D: xeR R: y 22
- c) $p(x) = f(x) \cdot g(x)$ = $(x+2) \cdot |x|$

D: XER R: YER Use $f(x) = \sqrt{x}$ and g(x) = x - 3.

- a) State the domain and range of f(x) and of g(x).
- b) Given d(x) = f(x) g(x), write an explicit equation for d(x), then determine its domain and range.
- c) Given p(x) = f(x) · g(x), write an explicit equation for p(x), then determine its domain and range.

SOLUTION

a) $f(x) = \sqrt{x}$

The domain of f(x) is $x \ge 0$ and the range is $y \ge 0$. g(x) = x - 3

The domain of g(x) is $x \in \mathbb{R}$ and the range is $y \in \mathbb{R}$.

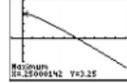
b) In d(x) = f(x) - g(x), substitute: $f(x) = \sqrt{x}$ and g(x) = x - 3So, an equation is:

$$d(x) = \sqrt{x} - (x - 3)$$
, or

$$d(x) = \sqrt{x} - x + 3$$

The domain of f(x) is $x \ge 0$ and the domain of g(x) is $x \in \mathbb{R}$,

so the domain of d(x) is $x \ge 0$.



For the range, use technology to graph $d(x) = \sqrt{x} - x + 3$ Use 2nd TRACE 4 to determine the maximum value: y = 3.25So, the range of d(x) is: $y \le 3.25$

c) In p(x) = f(x) ⋅ g(x), substitute:
f(x) = √x and g(x) = x - 3
So, an equation is: p(x) = √x (x - 3)
By the same reasoning as in part b, the domain of p(x) is x ≥ 0. For the range, use technology to graph p(x) = √x (x - 3)

Minimum N=1.0000006 V=-2

Use [2nd] TRACE [3] to determine the minimum value: y = -2So, the range of p(x) is: $y \ge -2$

Given two functions f(x) and g(x), another function can be defined by dividing f(x) and g(x).

The quotient of functions f(x) and g(x) is $f(x) \div g(x)$; this may also be written as $(f \div g)(x)$.

Given $q(x) = \frac{f(x)}{g(x)}$ consider coordinates of corresponding points.

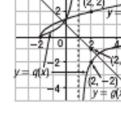
To determine the value of q(2), divide f(2) by g(2).

From the graph,
$$\frac{f(2)}{g(2)} = \frac{2}{-1}$$

= -2
= $q(2)$

The domain of f(x) is: $x \ge -2$; the domain of g(x) is: $x \in \mathbb{R}$ The domain of g(x) is: $x \ge -2$, $x \ne 1$

The graph above illustrates that the domain of the function $y = \frac{f(x)}{g(x)}$ is restricted to those values of x for which $g(x) \neq 0$, and for which f(x) and g(x) are defined.



Example 2

Writing the Equation of a Function that is a Quotient of Functions

Use $f(x) = \sqrt{x}$ and $g(x) = (x - 3)^2$.

- a) State the domain and range of f(x) and of g(x).
- **b)** Given $q(x) = \frac{f(x)}{g(x)}$, write an explicit equation for q(x), then determine its domain and range.

SOLUTION

a) $f(x) = \sqrt{x}$

The domain of f(x) is $x \ge 0$ and the range is $y \ge 0$.

 $g(x) = (x - 3)^2$

g(x) is a quadratic function whose graph opens up and has vertex (3, 0); the domain is $x \in \mathbb{R}$ and the range is $y \ge 0$.

b) $q(x) = \frac{f(x)}{g(x)}$

Substitute: $f(x) = \sqrt{x}$ and

$$g(x) = (x-3)^2$$

$$q(x) = \frac{\sqrt{x}}{(x-3)^2}$$

Both f(x) and g(x) are defined for $x \ge 0$, and g(x) = 0 when x = 3. So, the domain of q(x) is: $x \ge 0$, $x \ne 3$

For the range, use technology to graph: $q(x) = \frac{\sqrt{x}}{(x-3)^2}$

Use TRACE or 2nd GRAPH for TABLE to determine that the range of q(x) is: $y \ge 0$

Check Your Understanding

- **2.** Use $f(x) = \sqrt{x}$ and g(x) = x 2.
 - a) State the domain and range of f(x) and of g(x).
 - b) Given q(x) = \frac{f(x)}{g(x)}\text{ write an explicit equation for q(x), then determine its domain and range.
- Ø a) f(x): D: x≥0

R: y 20

g(x): D: x e R R: y e R

b) $q(x) = \frac{\sqrt{x}}{x-2}$

D: x 20 , x +2

R: yeR

Assignment: p.278 #5,6,9-11