3.5a Solving Exponential Equations Algebraically

5.3
 Solving Exponential Equations

FOCUS Solve problems by modelling situations with exponential equations.

Get Started $2(-3)=-6$
Solve the equation $2 x^{2}-1 x-3=0$ algebraically.
How could you solve it graphically?

$$
\begin{array}{lll}
\begin{array}{ll}
\frac{-6}{-1 \times 6} & \frac{\text { sum }}{5} \\
-2 \times 3 & 1 \\
-3 \times 2 & -1
\end{array} & \begin{array}{ll}
2 x^{2}-x-3 & =0 \\
2 x^{2}-3 x+2 x-3 & =0 \\
x(2 x-3)+1(2 x-3) & =0 \\
x=\frac{3}{2},-1 & (2 x-3)(x+1)
\end{array} & =0 \\
6 & x+1 & =0 \\
2 x-3 & =0 \\
2 x=3 \\
x & x / 2
\end{array} \quad x=-1 .
$$

Construct Understanding

Solve this equation in two ways: $2^{x}=32$
Can you use the same two strategies to solve this equation? $2^{z}=12$ Explain your response.
Solve the equation and write the root to the nearest hundredth.

- Algebraic method: Write 32 as a power with base 2.

$$
\begin{aligned}
32=2^{5} \quad 2^{x} & =32 \\
2^{x} & =2^{5} \\
\therefore x & =5
\end{aligned}
$$

THINK FURTHER

Is it possible for 2° to be equal to any real number?

An exponential equation contains a power with a variable in the exponent. For example, $3^{*}=81$ is an exponential equation. One strategy to solve this equation uses the fact that when two powers with the same base are equal, their exponents are also equal.
Since 81 is a power of 3 , both sides of the equation can be written as powers of 3 .
$3^{x}=81$
$3^{x}=3^{4}$
So, $x=4$

Example 1 Solving an Exponential Equation Using Common Bases

Check Your Understanding

Solve each equation.
a) $2^{x}=\frac{1}{128}$
b) $4^{x}=8^{x-1}$

SOLUTION

a) $2^{x}=\frac{1}{128} \quad$ Write 128 as a power of 2 .

$$
\begin{aligned}
2^{x} & =\frac{1}{2^{7}} \\
2^{x} & =2^{-7} \\
x & \text { Write the right side with a negative exponent. } \\
x & \text { Equate the exponents. }
\end{aligned}
$$

b) $4^{x}=8^{-1}$

8 cannot be written as a power of 4 ; however, both 4 and 8 can be written as powers of 2 .

$$
\begin{aligned}
\left(2^{2}\right)^{x} & =\left(2^{3}\right)^{-1} & & \text { Use exponent laws to simplify each side. } \\
2^{2 x} & =2^{3 x-3} & & \text { Equate the exponents. } \\
2 x & =3 x-3 & & \\
x & =3 & &
\end{aligned}
$$

1. Solve each equation.
a) $4^{x}=\frac{1}{256}$
b) $27^{x}=9^{2 x-1}$
a) $256=4^{4}$ $4^{x}=\frac{1}{256}$
$=\frac{1}{4^{4}}$
$4^{x}=4^{-4}$

$$
\therefore x=-4
$$

b) $27^{x}=\left(3^{3}\right)^{x}=3^{3 x}$
$9^{2 x-1}=\left(3^{2}\right)^{2 x-1}=3^{4 x-2}$
$27^{x}=9^{2 x-1}$
$3^{3 x}=3^{4 x-2}$
$\therefore 3 x=4 x-2$
$-4 x-4 x$
$(-x=-2) \cdot(-1)$

$$
x=2
$$

The solutions of the equations in Example 1 can be verified by substituting the root into each equation.
For example, in part b, for $4^{x}=8^{2-1}$, substitute: $x=3$
L.S. $=4^{z}$
RS. $=8^{-1}$
$=4^{3}$
$=8^{3-1}$
$=64$
$=8^{2}$
$=64$
p. 364 \#3-6

Since the left side is equal to the right side, the solution is verified.

Example 2
 Solving an Exponential Equation Involving Radicals

Check Your Understanding

2. Solve each equation.
a) $2^{x}=8 \sqrt[3]{2}$
b) $(\sqrt{125})^{2 x+1}=\sqrt[3]{625}$

$$
\text { a) } \begin{aligned}
8 \sqrt[3]{2} & =8 \cdot \sqrt[3]{2} \\
& =2^{3} \cdot 2^{1 / 3} \\
& =2^{3+1 / 3} \\
& =2^{3 / 3} \\
2^{x} & =8 \sqrt[3]{2} \\
2^{x} & =2^{3 y / 3} \\
x & =3^{1 / 3} \text { or } \frac{10}{3}
\end{aligned}
$$

$$
\text { b) } 125=5^{3} ; 625=5^{4}
$$

$$
=\left(\left(5^{3}\right)^{1 / 2}\right)^{2 x+1}
$$

$$
=5^{3 x+3 / 2}
$$

$$
=\left(5^{4}\right)^{1 / 3}
$$

$$
(\sqrt{125})^{2 x+1}=\sqrt[3]{625}
$$

$$
\left(3 x+\frac{3}{2}=\frac{4}{3}\right) \cdot 6
$$

$$
\begin{aligned}
18 x & =-1 \\
x & =-\frac{1}{18}
\end{aligned}
$$

p. 365 \#9ace, 10ace

Solve each equation.
a) $2^{x}=4 \sqrt{2}$
b) $(\sqrt{3})^{-1}=\sqrt[3]{9}$

SOLUTION

a) $2^{z}=4 \sqrt{2} \quad$ On the right side, write 4 as 2^{2} and $\sqrt{2}$ as $2 \frac{1}{2}$.

$$
\begin{aligned}
& 2^{x}=2^{2} \cdot 2^{\frac{1}{2}} \quad \text { Use the product of powers law. } \\
& 2^{x}=2^{2+\frac{1}{2}} \\
& 2^{x}=2^{3} \\
& x=\frac{5}{2}, \text { or } 2.5
\end{aligned}
$$

b) $(\sqrt{3})^{-1}=\sqrt[3]{9} \quad$ Write both sides as powers of 3 .

$$
(\sqrt{125})^{2 x+1}=\left(125^{\frac{1}{2}}\right)^{2 x+1}
$$

$$
=\left(5^{3 / 2}\right)^{2 x+1}
$$

$$
\sqrt[3]{625}=625^{1 / 3}
$$

$$
=5^{4 / 3}
$$

$$
5^{3 x+3 / 2}=5^{4 / 3}
$$

$$
18 x+9=8
$$

$\left(3 \frac{1}{2}\right)^{-1}=\sqrt[3]{3^{2}}$
$\left(3^{\frac{1}{2}}\right)^{-1}=3^{\frac{2}{3}}$
$3^{\frac{1}{2}-\frac{1}{2}}=3^{\frac{2}{3}} \quad$ Equate the exponents.
$\frac{1}{2} x-\frac{1}{2}=\frac{2}{3} \quad$ Multiply by the common denominator 6 .

$$
\begin{aligned}
6\left(\frac{1}{2} x-\frac{1}{2}\right) & =6\left(\frac{2}{3}\right) \\
3 x-3 & =4 \\
3 x & =7 \\
x & =\frac{7}{3}
\end{aligned}
$$

When money is invested in a savings account, it earns interest. If the interest is reinvested in the account, it also earns interest; this is called compound interest.
Consider an investment of $\$ 100$ in a savings account that pays 2% annual interest, compounded annually. 'This means that the interest earned is calculated and paid into the account annually (once a year); that is, the compounding period is 1 year.
After 1 year, the amount is:
$\$ 100+2 \%$ of $\$ 100=\$ 100+0.02(\$ 100)$

$$
=\$ 100(1+0.02) \text {, or } \$ 100(1.02)
$$

After 2 years, the amount is:

$$
\begin{aligned}
\$ 100(1.02)+2 \% \text { of } \$ 100(1.02) & =\$ 100(1.02)(1+0.02) \\
& =\$ 100(1.02)^{2}
\end{aligned}
$$

Each subsequent year, the amount increases by a factor of 1.02.

$$
\text { p. } 365 \text { \#qace, 10ace } \begin{aligned}
\$ 100(1.02)+2 \% \text { of } \$ 100(1.02) & =\$ 100(1.02)(1+0.02) \\
& =\$ 100(1.02)^{2}
\end{aligned}
$$

Each subsequent year, the amount increases by a factor of 1.02 .
After 3 years, the amount is: $\$ 100(1.02)^{3}$
This pattern continues.
After t years, the amount is: $\$ 100(1.02)^{t}$

