3.3 Stretching and Compressing Graphs

3.3 **Stretching and Compressing Graphs of Functions**

FOCUS Relate changes in the equation of a function to stretches and compressions of its graph.

Get Started

Here is the graph of $y = x^2$. How is the graph of $y = \alpha x^2$ related to the graph of $y = x^2$ for each value of α ?

• a = 20

• a = -0.5

0

• a = -2

0

Construct Understanding

Look at the following graphs.

Each graph is the image of the graph of $y=\sqrt{x}$ after a transformation. A point on the graph of $y=\sqrt{x}$ and its images are shown. How does the graph of $y=a\sqrt{x}$ compare to the graph of $y=\sqrt{x}$?

What is the effect of a?

How does the graph of $y = \sqrt{bx}$ compare to the graph of $y = \sqrt{x}$? What is the effect of b?

How does the graph of $y = a\sqrt{bx}$ compare to the graph of $y = \sqrt{x}$?

What are the effects of a and b?

@P DO NOT COPY.

3.3 Stretching and Compressing Graphs of Functions 193

Graphs of the form $y = a\sqrt{x}$

Graphs of the form $y = \sqrt{bx}$

Graphs of the form $y = a\sqrt{bx}$

194 Chapter 3: Transforming Graphs of Functions

DO NOT COPY. @P

Consider the graph of $y = x^3$.

If y is replaced with 2y, the equation becomes $2y = x^3$, or $y = \frac{1}{2}x^3$.

If y is replaced with $\frac{1}{2}y$, the equation becomes $\frac{1}{2}y = x^3$, or $y = 2x^3$.

Look at the points where the graphs intersect the vertical line x = 2: A(2, 8), B(2, 4), C(2, 16)

The y-coordinate of point B is $\frac{1}{2}$ the y-coordinate of point A. This will be true for any point on $y = x^3$ and the point with the same x-coordinate on $y = \frac{1}{2}x^3$.

So, the graph of $y = \frac{1}{2}x^3$ is the image of the graph of $y = x^3$ after a vertical compression by a factor of $\frac{1}{2}$.

The y-coordinate of point C is 2 times the y-coordinate of point A. This will be true for any point on $y = x^3$ and the point with the same x-coordinate on $y = 2x^3$. So, the graph of $y = 2x^3$ is the image of the graph of $y = x^3$ after a vertical stretch by a factor of 2.

Consider the graph of $y = x^3$.

If y is replaced with $-\frac{1}{2}y$, the equation becomes $-\frac{1}{2}y = x^3$, or $y = -2x^3$.

The y-coordinate of point D(2, -16) is -2 times the y-coordinate of point $\Lambda(2,8)$. This will be true for any point on $y=x^3$ and the point with the same x-coordinate on $y=-2x^3$.

So, the graph of $y = -2x^3$ is the image of the graph of $y = x^3$ after a vertical stretch by a factor of 2 and a reflection in the x-axis.

Vertical Stretches, Compressions, and Reflections

The graph of y = af(x) is the image of the graph of y = f(x) after a vertical stretch, compression, or reflection. Point (x, y) on y = f(x) corresponds to point (x, ay) on y = af(x).

• When 0 < |a| < 1, there is a vertical compression by a factor of lal.

- y = f(x) corresponds to point (x, ay) on y = af(x).
- When 0 < |a| < 1, there is a vertical compres
- of |a|.
- When |a| > 1, there is a vertical stretch by a factor of |a|.
 When a < 0, there is a reflection in the x-axis as well as the stretch or compression.

GP DO NOT COPY.

3.3 Stretching and Compressing Graphs of Functions 195

Example 1

Sketching the Graph of a Function after a Vertical Stretch and Reflection

1. Here is the graph of y = f(x). Sketch the graph of $y = -\frac{1}{4}f(x).$

State the domain and range of each function.

multiply y-values by -4

$$\begin{array}{ccc} (-8,8) & \to (-8,-2) \\ (-4,4) & \to (-4,-1) \\ (0,0) & \to (0,0) \\ (4,4) & \to (4,-1) \end{array}$$

$$(8,8) \rightarrow (8,-2)$$

y = f(x)

D: EXERS

D: {x & R} -R: {y≥o,y€R}

y = -4f(x) 4R: {y <0, y < R}

SOLUTION

Compare y = ag(x) to y = -3g(x):

So, the graph of y = g(x) is vertically stretched by a factor of 3, then reflected in the x-axis.

Use: (x, y) on y = g(x) corresponds to (x, -3y) on y = -3g(x). Choose the intercepts and some lattice points on y = g(x). multiply y-values by 3

Point on $y = g(x)$	Point on $y = -3g(x)$
(-2, -3)	(-2, <mark>9</mark>)
(-1, <mark>0</mark>)	(-1, 0)
(0, -1)	(0, 3)
(1, <mark>0</mark>)	(1, <mark>0</mark>)
(2, -3)	(2, <mark>9</mark>)

Plot the points, then draw a smooth curve through them.

Both functions have domain: $x \in \mathbb{R}$

The range of y = g(x) is: $y \le 0$ The range of y = -3g(x) is: $y \ge 0$

THINK FURTHER

In Example 1, the graph of y=g(x) has equation $y=-|-x^2+1|$. What is the explicit equation for y=-3g(x)?

0

Consider the graph of $y = x^3$. If x is replaced with 2x, the equation becomes $y = (2x)^3$.

If x is replaced with $\frac{1}{4}x$, the equation becomes $y = \left(\frac{1}{4}x\right)^3$.

Look at the points where the graphs intersect the horizontal line y = 64: $\Lambda(4, 64), B(2, 64), C(16, 64)$

The x-coordinate of point B is $\frac{1}{2}$ the x-coordinate of point A. This will be true for any point on $y=x^b$ and the point with the same y-coordinate on $y=(2x)^b$. So, the graph of $y=(2x)^b$ is the image of the graph of $y=x^b$ after a horizontal compression by a factor of $\frac{1}{2}$. The x-coordinate of point C is 4 times the x-coordinate of point A. This will be true for any point on $y=x^b$ and the point with the same y-coordinate on $y=\left(\frac{1}{4}x\right)^b$. So, the graph of $y=\left(\frac{1}{4}x\right)^b$ is the image of the graph of $y=x^b$ after a horizontal stretch by a factor of 4.

Consider the graph of $y = x^3$. If x is replaced with $-\frac{1}{4}x$, the equation becomes $y = \left(-\frac{1}{4}x\right)^3$. The x-coordinate of point

D(-16,64) is -4 times the

x-coordinate of point X(4, 64). This will be true for any point on $y = x^3$ and the point with the same y-coordinate on $y = \left(\frac{1}{4}x\right)^3$. So, the graph of $y = \left(\frac{1}{4}x\right)^3$ is the image of the graph of $y = x^3$ after a horizontal stretch by a factor of 4 and a reflection in the y-axis.

Horizontal Stretches, Compressions, and Reflections

The graph of y = f(bx) is the image of the graph of y = f(x) after a horizontal stretch, compression, or reflection. Point (x, y) on y = f(x) corresponds to point $\left(\frac{y}{b}, y\right)$ on y = f(bx).

- When 0 < |b| < 1, there is a horizontal stretch by a factor of $\frac{1}{|b|}$.
- When |b| > 1, there is a horizontal compression by a factor of $\frac{1}{|b|}$
- When b < 0, there is a reflection in the y-axis as well as the stretch or compression.

Check Your Understanding

2. Here is the graph of y = g(x). Sketch the graph of y = g(0.5x). State the domain and range of each function.

4 divide 2-values by 0.5

$$(-3,2) \rightarrow (-6,2)$$

 $(-1,5) \rightarrow (-2,5)$

$$(0,4.5) \rightarrow (0,4.5)$$

 $(3,3) \rightarrow (6,3)$

$$(4,-2) \rightarrow (8,-2)$$

y = q(0.5x)D: { -64x48, XER} R: {-2 < y < 5, y < R }

Here is the graph of y = f(x). Sketch the graph of y = f(-3x). State the domain and range of each function.

SOLUTION

Compare y = f(bx) to y = f(-3x): b = -3So, the graph of y = f(x) is horizontally

compressed by a factor of $\frac{1}{3}$, then reflected in the y-axis.

Use: (x, y) on y = f(x) corresponds to $\left(\frac{x}{-3}, y\right)$ on y = f(-3x).

The graph consists of line segments. Choose the endpoints of the line

divide x-values by -3	
Point on $y = f(x)$	Point on $y = f(-3x)$
(-6, -4)	(2, -4)
(-3, 6)	(1, 6)
(3, 4)	(=1, 4)

Plot the points, then join them in order with line segments.

The domain of y = f(x) is: $-6 \le x \le 6$ The domain of y = f(-3x) is: $-2 \le x \le 2$

(-2, -2)

Both functions have range: $-4 \le y \le 6$

198 Chapter 3: Transforming Graphs of Functions

DO NOT COPY. @P

Combining Transformations

Stretches, compressions, and reflections may be combined.

The point (x, y) on y = f(x) corresponds to the point $\left(\frac{x}{h}, ay\right)$ on

Example 3

Sketching the Graph of a Function after a Combination of Transformations

Here is the graph of y = h(x). Sketch the graph of $y = -\frac{1}{2}h(2x)$.

State the domain and range of each function.

SOLUTION

Compare y = ah(bx) to $y = -\frac{1}{2}h(2x)$:

$$a = -\frac{1}{2}$$
 and $b = 2$

So, the graph of y = h(x) is vertically compressed by a factor of $\frac{1}{2}$, horizontally compressed by a factor of $\frac{1}{2}$, then reflected in the x-axis.

Use: (x, y) on y = h(x) corresponds to $\left(\frac{x}{2}, -\frac{1}{2}y\right)$ on $y = -\frac{1}{2}h(2x)$. Choose lattice points on y = h(x).

Point on $y = h(x)$	Point on $y = -0.5h(2x)$
(-2, 12)	(-1, -6)
(-1, 2)	(-0.5, -1)
(0, 4)	(0, -2)
(1, 6)	(0.5, -3)
(2, -4)	(1, 2)

3. Here is the graph of y = f(x). Sketch the graph of y = 4f(-0.5x). State the domain and range of each function

multiply y-values by 4 divide x-values by -0.5

 $(-2,0) \rightarrow (4,0)$

 $(-1,1) \rightarrow (2,4)$

 $(2,2) \rightarrow (-4,8)$

 $(7,3) \rightarrow (-14,12)$

y = f(x)D: $\{x \ge -2, x \in \mathbb{R}\}$ divide by -0.5 (sign flips) R: Ey >0, yer3 y = 4f(-0.5x)

1 -1 -7	1 0.0, -1,
(0, 4)	(0, -2)
(1, 6)	(0.5, -3)
(2, -4)	(1, 2)

Plot the points, then join them with a smooth curve. Both functions have domain: $x \in \mathbb{R}$ Both functions have range: $y \in \mathbb{R}$

©P DO NOT COPY.

3.3 Stretching and Compressing Graphs of Functions 199

Writing an Equation of the Image Graph after Transformations

 The graphs of y = f(x) and its image after a vertical and/or horizontal compression are shown. Write an equation of the image graph in terms of the function f.

The graphs of y = f(x) and its image after a vertical and/or horizontal stretch are shown. Write an equation of the image

SOLUTION

Example 4

graph in terms of the function f.

Identify corresponding points on y=f(x) and its image. A local maximum of y=f(x) has coordinates (-2,4). The corresponding local maximum of its image has coordinates

An equation for the image graph after a vertical and/or horizontal stretch can be written in the form y = af(bx).

A point (x, y) on y = f(x) corresponds to the point $(\frac{x}{b}, ay)$ on y = af(bx).

So, the image of (-2, 4) is (-2, a(4)), which is (-8, 12).

Equate the x-coordinates:

Equate the y-coordinates:
$$12 = a(4)$$

$$-8 = \frac{-2}{b}$$

 $b = \frac{1}{4}$, or 0.25

So, an equation is: $y = 3f(\frac{1}{4}x)$

Verify with a different pair of corresponding points. (1, 4) lies on y = f(x) so $\left(\frac{1}{0.25}, 3(4)\right)$, or (4, 12) should lie on

$$y = 3f(\frac{1}{4}x)$$
, which it does.

So, the equation $y = 3f(\frac{1}{4}x)$ is likely correct.

Assignment: #1,3-8,10-14