3.3 Stretching and Compressing Graphs

3.3 Stretching and Compressing Graphs of Functions

FOCUS Relate changes in the equation of a function to stretches

 and compressions of its graph.
Get Started

Here is the graph of $y=x^{2}$.
How is the graph of $y=a x^{2}$ related to the graph of $y=x^{2}$ for each value of a ?

$$
\cdot a=0.5
$$

0

- $a=2$

0
$\cdot a=-0.5$
0
$\cdot a=-2$
0

Construct Understanding

$$
\begin{aligned}
& \text { Look at the following graphs. } \\
& \text { Each graph is the image of the graph of } y=\sqrt{x} \text { after a transformation. } \\
& \text { A point on the graph of } y=\sqrt{x} \text { and its images are shown. } \\
& \text { How does the graph of } y=a \sqrt{x} \text { compare to the graph of } y=\sqrt{x} \text { ? } \\
& \text { What is the effect of } a \text { ? } \\
& \text { How does the graph of } y=\sqrt{b x} \text { compare to the graph of } y=\sqrt{x} \text { ? } \\
& \text { What is the effect of } b \text { ? } \\
& \text { How does the graph of } y=a \sqrt{b x} \text { compare to the graph of } y=\sqrt{x} \text { ? } \\
& \text { What are the effects of } a \text { and } b \text { ? }
\end{aligned}
$$

Graphs of the form $y=a \sqrt{x}$

$$
\text { Graphs of the form } y=a \sqrt{b x}
$$

Consider the graph of $y=x^{3}$.
If y is replaced with $2 y$, the equation becomes
$2 y=x^{3}$, or $y=\frac{1}{2} x^{3}$.
If y is replaced with $\frac{1}{2} y$, the equation becomes
$\frac{1}{2} y=x^{3}$, or $y=2 x^{3}$.
Look at the points where the graphs intersect the vertical line $x=2: \mathrm{A}(2,8), \mathrm{B}(2,4), \mathrm{C}(2,16)$

The y-coordinate of point B is $\frac{1}{2}$ the y-coordinate $\quad y-x^{4}$ of point A . This will be true for any point on $y=x^{3}$ and the point with
the same x-coordinate on $y=\frac{1}{2} x^{3}$.
So, the graph of $y=\frac{1}{2} x^{3}$ is the image of the graph of $y=x^{3}$ after a vertical compression by a factor of $\frac{1}{2}$.
The y-coordinate of point C is 2 times the y-coordinate of point A .
This will be true for any point on $y=x^{3}$ and the point with the same
x-coordinate on $y=2 x^{3}$.
So, the graph of $y=2 x^{3}$ is the image of the graph of $y=x^{3}$ after a
vertical stretch by a factor of 2 .
Consider the graph of $y=x^{3}$.
If y is replaced with $-\frac{1}{2} y$, the equation becomes $-\frac{1}{2} y=x^{3}$, or $y=-2 x^{3}$.
The y-coordinate of point $\mathrm{D}(2,-16)$ is -2 times the y-coordinate of point $\mathrm{A}(2,8)$. This will be true for any point on $y=x^{3}$ and the point with
 the same x-coordinate on $y=-2 x^{3}$.
So, the graph of $y=-2 x^{3}$ is the image of the graph of $y=x^{3}$ after a vertical stretch by a factor of 2 and a reflection in the x-axis.

Vertical Stretches, Compressions, and Reflections

The graph of $y=\alpha f(x)$ is the image of the graph of $y=f(x)$ after a vertical stretch, compression, or reflection. Point (x, y) on
$y=f(x)$ corresponds to point $(x, a y)$ on $y=a f(x)$.

- When $0<|a|<1$, there is a vertical compression by a factor of lal.

The graph of $y=a f(x)$ is the image of the graph of $y=f(x)$ after
a vertical stretch, compression, or reflection. Point (x, y) on
$y=f(x)$ corresponds to point $(x, a y)$ on $y=a f(x)$.

- When $0<|a|<1$, there is a vertical compression by a factor of $|a|$.
- When $|a|>1$, there is a vertical stretch by a factor of $|a|$.
- When $a<0$, there is a reflection in the x-axis as well as the stretch or compression.

Example 1 Sketching the Graph of a Function after a Vertical Stretch and Reflection

Consider the graph of $y=x^{3}$.
If x is replaced with $2 x$, the equation becomes $y=(2 x)^{3}$.
If x is replaced with $\frac{1}{4} x$, the equation becomes $y=\left(\frac{1}{4} x\right)^{3}$.
Look at the points where the graphs intersect the horizontal line $y=64$:
$\mathrm{A}(4,64), \mathrm{B}(2,64), \mathrm{C}(16,64)$

The x-coordinate of point B is $\frac{1}{2}$ the x-coordinate of point A .
This will be true for any point on $y=x^{3}$ and the point with the same y-coordinate on $y=(2 x)^{3}$. So, the graph of $y=(2 x)^{3}$ is the image of the graph of $y=x^{3}$ after a horizontal compression by a factor of $\frac{1}{2}$.
The x-coordinate of point C is 4 times the x-coordinate of point A .
This will be true for any point on $y=x^{3}$ and the point with the same y-coordinate on $y=\left(\frac{1}{4} x\right)^{3}$. So, the graph of $y=\left(\frac{1}{4} x\right)^{3}$ is the image of the graph of $y=x^{3}$ after a horizontal stretch by a factor of 4 .
Consider the graph of $y=x^{3}$.
If x is replaced with $-\frac{1}{4} x$, the
equation becomes $y=\left(-\frac{1}{4} x\right)^{3}$.
The x-coordinate of point
$D(-16,64)$ is -4 times the
x-coordinate of point $\mathrm{A}(4,64)$,
This will be true for any point on $y=x^{3}$ and the point with the same
y-coordinate on $y=\left(\frac{1}{4} x\right)^{3}$. So, the graph of $y=\left(\frac{1}{4} x\right)^{3}$ is the image of
the graph of $y=x^{3}$ after a horizontal stretch by a factor of 4 and a
reflection in the y-axis.

Horizontal Stretches, Compressions, and Reflections

The graph of $y=f(b x)$ is the image of the graph of $y=f(x)$ after a horizontal stretch, compression, or reflection. Point (x, y) on
$y=f(x)$ corresponds to point $\left(\frac{x}{b}, y\right)$ on $y=f(b x)$

- When $0<|b|<1$, there is a horizontal stretch by a factor of $\frac{1}{|b|}$.
- When $|b|>1$, there is a horizontal compression by a factor of $\frac{1}{|b|}$.
- When $b<0$, there is a reflection in the y-axis as well as the stretch or compression. Horizontal Stretch and Reflection

Check Your Understanding
2. Here is the graph of $y=g(x)$. Sketch the graph of
$y=g(0.5 x)$. State the domain and range of each function.

\checkmark divide x-values by 0.5
$(-3,2) \rightarrow(-6,2)$
$(-1,5) \rightarrow(-2,5)$
$(0,4.5) \rightarrow(0,4.5)$
$(3,3) \rightarrow(6,3)$
$(4,-2) \rightarrow(8,-2)$
$y=g(x)$
divide
$-D:\{-3 \leq x \leq 4, x \in \mathbb{R}\}$
by 0.5

Here is the graph of $y=f(x)$. Sketch the graph of $y=f(-3 x)$. State the domain and range of each function.

SOLUTION

Compare $y=f(b x)$ to $y=f(-3 x): b=-3$
So, the graph of $y=f(x)$ is horizontally
compressed by a factor of $\frac{1}{3}$, then reflected in the y-axis
Use: (x, y) on $y=f(x)$ corresponds to $\left(\frac{x}{-3}, y\right)$ on $y=f(-3 x)$.
The graph consists of line segments. Choose the endpoints of the line segments.

Plot the points, then join them in order with line segments.
The domain of $y=f(x)$ is: $-6 \leq x \leq 6$
The domain of $y=f(-3 x)$ is: $-2 \leq x \leq 2$
Both functions have range: $-4 \leq \bar{y} \leq \frac{-}{6}$

Combining Transformations

Stretches, compressions, and reflections may be combined.
The point (x, y) on $y=f(x)$ corresponds to the point $\left(\frac{x}{b}, a y\right)$ on $y=a f(b x)$.

Example 3 Sketching the Graph of a Function after a

 Combination of TransformationsHere is the graph of $y=h(x)$.
Sketch the graph of $y=-\frac{1}{2} h(2 x)$.
State the domain and range of each function.

SOLUTION

Compare $y=a h(b x)$ to $y=\frac{1}{2} h(2 x):$
$a=-\frac{1}{2}$ and $b=2$
So, the graph of $y=h(x)$ is vertically compressed by a factor of $\frac{1}{2}$, horizontally compressed by a factor of $\frac{1}{2}$, then reflected in the x-axis.
Use: (x, y) on $y=h(x)$ corresponds to $\left(\frac{x}{2},-\frac{1}{2} y\right)$ on $y=\frac{1}{2} h(2 x)$.
Choose lattice points on $y=h(x)$.

Point on $\boldsymbol{y}=\boldsymbol{h}(\boldsymbol{x})$	Point on $\boldsymbol{y}=-\mathbf{0 . 5 h (2 x)}$
$(-2,12)$	$(-1,-6)$
$(-1,2)$	$(-0.5,-1)$
$(0,4)$	$(0,-2)$
$(1,6)$	$(0.5,-3)$
$(2,-4)$	$(1,2)$

Check Your Understanding
3. Here is the graph of $y=f(x)$. Sketch the graph of
$y=4 f(-0.5 x)$. State the domain and range of each function.

0 multiply y-values by 4
divide x-values by -0.5
$(-2,0) \rightarrow(4,0)$
$(-1,1) \rightarrow(2,4)$
$(2,2) \rightarrow(-4,8)$
$(7,3) \rightarrow(-14,12)$
$y=f(x)$
divide by -0.5
$D:\{x \geq-2, x \in \mathbb{R}\}$ (sign flips)
$R:\{y \geq 0, y \in \mathbb{R}\}$
$y=4 f(-0.5 x)$
$\prod_{\text {multic i }}$ m

Plot the points, then join them with a smooth curve.
Both functions have domain: $x \in \mathbb{R}$
Both functions have range: $y \in \mathbb{R}$
$\left.\begin{array}{l}D:\{x \geq-2, x \in \mathbb{R}\} \\ R:\{y \geq 0, y \in \mathbb{R}\} \\ y=4 f(-0.5 x) \\ D:\{x \leq 4, x \in \mathbb{R}\}\end{array}\right]$ (sign flinss)
$D:\{x \leq 4, x \in \mathbb{R}\}$
$R:\{y \geq 0, y \in \mathbb{R}\}$

Example 4

Writing an Equation of the Image Graph after Transformations
4. The graphs of $y=f(x)$ and its image after a vertical and/or horizontal compression are hown. Write an equation of the image graph in terms of the function

0

$(3,9) \rightarrow(1.5,4.5)$
$(2,-8) \rightarrow(1,-4)$ multiply by $\frac{1}{2}$
$y=\frac{1}{2} f(2 x)$
The graphs of $y=f(x)$ and its image after a vertical and/or horizontal stretch are shown. Write an equation of the image graph in terms of the function f.

SOLUTION

Identify corresponding points on $y=f(x)$ and its image.
A local maximum of $y=f(x)$ has coordinates $(-2,4)$.
The corresponding local maximum of its image has coordinates
$(-8,12)$.
An equation for the image graph after a vertical and/or horizontal stretch can be written in the form $y=a f(b x)$.
A point (x, y) on $y=f(x)$ corresponds to the point $\left(\frac{x}{b}, a y\right)$ on
$y=a f(b x)$.
So, the image of $(-2,4)$ is $\left(\frac{-2}{b}, a(4)\right)$, which is $(-8,12)$.
Equate the x-coordinates: Equate the y-coordinates:
$-8=\frac{-2}{b}$
$12=a(4)$
$b=\frac{1}{4}$, or 0.25
$a=3$

So, an equation is: $y=3 f\left(\frac{1}{4} x\right)$
Verify with a different pair of corresponding points.
$(1,4)$ lies on $y=f(x)$ so $\left(\frac{1}{0.25}, 3(4)\right)$, or $(4,12)$ should lie on
Assignment:
\#1, 3-8, 10-14
$y=3 f\left(\frac{1}{4} x\right)$, which it does.
So, the equation $y=3 f\left(\frac{1}{4} x\right)$ is likely correct.

