MCF3M Unit 4, Lesson 1

Finding Side Lengths in Right Triangles

Given 2 sides of a right triangle it is always possible to find the 3rd side using Pythagorean Theorem.

If we know the value of one of the angles of a right triangle (other than the 90° angle) then we may use the sine, cosine and tangent ratios to find the other sides in the triangle. **SOH CAH TOA**

$$sin \Theta = \frac{opposite}{hypotenuse}$$

$$cos\Theta = \frac{adjacent}{hypotenuse}$$

Examples

Find the unknown side in each triangle below.

MCF3M Unit 4, Lesson 1

A wheelchair ramp is required to have an angle of elevation (inclination) that is not greater than 8°. Suppose a wheel chair ramp needs to reach an entranceway that is 4 feet off the ground. What horizontal length does the wheel chair ramp need to have?

$$\tan 8 = \frac{4}{x}$$

$$x = \frac{4}{\tan 8}$$

$$= 28.5 \text{ ft}$$

The wheel chair ramp needs to have a horizontal length of at least 28.5 ft.

A helicopter spots a boat that needs rescuing. The helicopter is flying at an elevation of 500m. The angle of depression to the boat is 15° . How far does the helicopter need to fly so it is directly over top of the boat?

$$\tan 15^{\circ} = \frac{500}{\chi}$$

$$\chi = \frac{500}{\tan 15^{\circ}}$$

$$= 1866 \text{ m}$$

The helicopter needs to fly 1866 m.