1.4 Negative and Zero Exponents

Math 101.4

\qquad
We know that exponents are used to simplify repeated multiplication expressions. For example,

$$
3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3=3^{7}
$$

But what do expressions like 2^{-5} or 8^{0} mean? Let's work backwards to figure this out.

2^{3}	$2 \times 2 \times 2=8$
2^{2}	$2 \times 2=4$
2^{1}	2
2^{0}	1
2^{-1}	$\frac{1}{2}$
2^{-2}	$\frac{1}{4}$
2^{-3}	$\frac{1}{8}$

$$
x^{-m}=\frac{1}{x^{m}} ; \frac{1}{x^{-m}}=x^{m}
$$

Rewrite each power with a positive exponent, then evaluate.

$$
7^{-2}=\frac{1}{7^{2}}=\frac{1}{49} \quad 8^{-1}=\frac{1}{8^{1}}=\frac{1}{8} \quad 3^{0}=1
$$

exponent only applies to the 4

$$
-4^{0}=-1
$$

$$
(-2)^{-5}=\frac{1}{(-2)^{5}}=\frac{1}{-32}
$$

$$
(-2)^{-4}=\frac{1}{(-2)^{4}}=\frac{1}{16}
$$

$$
(-4)^{0}=1
$$

$$
-9^{-2}=-\frac{1}{q^{2}}=-\frac{1}{81}
$$

$$
\left(\frac{1}{2}\right)^{-3}=\left(\frac{2}{1}\right)^{3}=\frac{8}{1}=8
$$

$$
\left(-\frac{3}{4}\right)^{-1}=\left(-\frac{4}{3}\right)^{1}=-\frac{4}{3}
$$

$$
\left(\frac{2}{3}\right)^{-3}=\left(\frac{3}{2}\right)^{3}=\frac{27}{8}
$$

$$
\left(-\frac{2}{3}\right)^{-3}=\left(-\frac{3}{2}\right)^{3}=-\frac{27}{8}
$$

$$
5^{-1}+(6-2)^{0}=\frac{1}{5}+1=1 \frac{1}{5}
$$

Write the fraction $\frac{1}{16}$ as a power of $2 . \quad \frac{1}{16}=\frac{1}{2^{4}}$
Simplify and rewrite each with only positive exponents.

$$
\begin{aligned}
& \qquad \begin{array}{ll}
a^{-4} \times a^{-3}=a^{-7}=\frac{1}{a^{7}} & 6 x^{2} \div 2 x^{7}=3 x^{-5}=\frac{3}{x^{5}} \quad \frac{y^{6}}{2 y^{-5}}=\frac{y^{6} \cdot y^{5}}{2}=\frac{y^{11}}{2} \\
(-2 x)^{-3}=\frac{1}{(-2 x)^{3}}=\frac{1}{-8 x^{3}} & \frac{8 a^{-5}}{4 b^{-3}}=\frac{2 b^{3}}{a^{5}}
\end{array} \begin{aligned}
& \frac{(5 p)^{-2}}{5 q^{4}}=\frac{1}{5 q^{4}(5 p)^{2}} \\
&=\frac{1}{5 q^{4}\left(25 p^{2}\right)} \\
& \text { Practise: }
\end{aligned} \\
& \text { Simplify and rewrite each expression using only positive exponents. }
\end{aligned}
$$

Practise:

$3^{-2}=$
$14^{-1}=$
$-(-2)^{0}=$
$(-4)^{-3}=$
$-5^{-2}=$
$\left(\frac{3}{4}\right)^{-2}=$
$\left(-\frac{7}{12}\right)^{-1}=$
$\left(-\frac{5}{8}\right)^{0}=$
$\left(-\frac{5}{2}\right)^{-3}=$
$-\left(\frac{1}{2}\right)^{-6}=$
$\left(4^{3}\right)\left(4^{-5}\right)=$
$\frac{3^{-4}}{3^{-2}}=$
$\frac{12^{3}}{12^{7}}=$
$\left(\frac{8^{-1}}{8^{0}}\right)^{3}=$
$\left(5^{4}\right)^{-2}=$
$\frac{1}{s^{2} t^{-6}}=$
$\frac{8 t}{t^{-3}}=$
$\left(\frac{n^{4}}{n^{-4}}\right)^{-3}=$
$\left[\left(x y^{4}\right)^{-3}\right]^{-2}=$
$\left[\left(h^{7}\right)\left(h^{-2}\right)\right]^{-2}=$

