1.3 Graphing Polynomial Functions

Name: \qquad
Graph each polynomial function using an online graphing tool (ex: Desmos) and complete the following table.
a) $f(x)=9 x^{2}-8 x-2$
b) $f(x)=-x^{4}-3 x^{3}+3 x^{2}+8 x+5$
c) $f(x)=2 x^{6}-13 x^{4}+15 x^{2}+x-17$
d) $f(x)=-2 x^{4}-4 x^{3}+3 x^{2}+6 x+9$
e) $f(x)=x^{3}-5 x^{2}+3 x+4$
f) $f(x)=2 x^{5}+7 x^{4}-3 x^{3}-18 x^{2}-20$
g) $f(x)=-x^{7}+8 x^{5}-16 x^{3}+8 x$
h) $f(x)=-2 x^{3}+8 x^{2}-5 x+3$

	Degree	y-intercept	\# of Turning Points	Sign of Leading Coefficient	Even or Odd Degree?	End Behaviour as $x \rightarrow \infty$	End Behaviour as $x \rightarrow-\infty$
a	2	-2	1	-	even	$y \rightarrow \infty$	$y \rightarrow \infty$
b	4	5	3	-	even	$y \rightarrow-\infty$	$y \rightarrow-\infty$
c	6	-17	5	+	even	$y \rightarrow \infty$	$y \rightarrow \infty$
d	4	9	3	-	even	$y \rightarrow-\infty$	$y \rightarrow-\infty$
e	3	4	2	+	odd	$y \rightarrow \infty$	$y \rightarrow-\infty$
f	5	-20	4	+	odd	$y \rightarrow \infty$	$y \rightarrow-\infty$
g	7	0	6	-	odd	$y \rightarrow-\infty$	$y \rightarrow \infty$
h	3	3	2	-	odd	$y \rightarrow-\infty$	$y \rightarrow \infty$

What are the maximum and minimum number of turning points in the graph of a polynomial function with degree 8? 9? n ?
degree 8: minimum \# of turning points is \qquad maximum \# of turning points is \qquad
degree 9: minimum \# of turning points is \qquad maximum \# of turning points is \qquad degree n : minimum \# of turning points is 0 if n is $0 d d_{\text {maximum \# of turning points is } n-1}$ 1 if n is even

What is the end behaviour of a function with a degree that is
a) even and has a positive leading coefficient?
$y \rightarrow \infty$ for both end behaviours
b) even and has a negative leading coefficient?

$y \rightarrow-\infty$ for both end behaviours

c) odd and has a positive leading coefficient?
$y \rightarrow-\infty$ when $x \rightarrow-\infty$
$y \rightarrow \infty$ when $x \rightarrow \infty$
(rises to the right)
d) odd and has a negative leading coefficient?
$y \rightarrow \infty$ when $x \rightarrow-\infty$
$y \rightarrow-\infty$ when $x \rightarrow \infty$
(falls to the right)

