1.2 Factoring Polynomials

PC12 1.2

Factoring Polynomials

Name: _____

Factor each polynomial.

 $6x^{2} + 7x - 3 \qquad 2x^{3} - 3x^{2} - 14x \qquad 49x^{2} - 36y^{4}$ $(3x - 1)(2x + 3) \qquad x(2x - 7)(x + 2) \qquad (7x + 6y^{2})(7x - 6y^{2})$

Can you use the same method as above to factor $2x^3 - 9x^2 + 7x + 6?$ No

Consider the polynomial $P(x) = 5x^3 - 2x^2 + 8x - 48 = (x-2)(5x^2 + 8x + 24)$. What is the value of P(2)?

Consider the polynomial $P(x) = 3x^3 + 2x^2 - x - 6 = (x+2)(3x^2 - 4x + 7) - 20$. What is the value of P(-2)?

Remainder Theorem

When a polynomial, P(x), is divided by a binomial, x - a, $a \in Z$, the remainder is P(a).

Example: Determine the remainder when $2x^4 - 5x^3 - 5x^2 + 5x + 3$ is divided by a) x - 3 and b) x + 2. a) $P(3) = 2(3)^4 - 5(3)^3 - 5(3)^2 + 5(3) + 3$ = 162 - 135 - 45 + 15 + 3 = 0 The remainder is 0. b) $P(-2) = 2(-2)^4 - 5(-2)^3 - 5(-2)^2 + 5(-2) + 3$ = 32 + 40 - 20 - 10 + 3= 45 The remainder is 45.

The special case of the remainder theorem in which the remainder is 0 is called the factor theorem.

Factor Theorem

For $a \in Z$, x - a is a factor of the polynomial P(x) if P(a) = 0.

Example: Which binomials are factors of $x^3 - 6x^2 + 5x + 12$? a) x + 1 b) x - 3 c) x - 4 d) x + 4a) $P(-1) = (-1)^3 - 6(-1)^2 + 5(-1) + 12 = 0$ b) $P(3) = (3)^3 - 6(3)^2 + 5(3) + 12 = 0$ c) $P(4) = (4)^3 - 6(4)^2 + 5(4) + 12 = 0$ d) $P(-4) = (-4)^3 - 6(-4)^2 + 5(-4) + 12 = -168$ $\chi + 1$, $\chi - 3$, and $\chi - 4$ are factors.

Factor Property

If $x - a, a \in Z$, is a factor of a polynomial, then a is a factor of the constant term in the polynomial.

+term without a variable

Example: Factor fully: $2x^3 - 9x^2 + 7x + 6$ possible factors/values of "a": $\pm 1, \pm 2, \pm 3, \pm 6$ P(1) = 2(1)³ - 9(1)² + 7(1) + 6 = 6 P(1) = 2(-1)³ - 9(-1)² + 7(-1) + 6 = -12 P(2) = 2(2)³ - 9(2)² + 7(2) + 6 = 0 $\Rightarrow x - 2$ is a factor -2 2 -9 7 6 -4 10 6 2 -5 -3 0 \Rightarrow P(x) = (x-2)(2x²-5x-3) P(x) = (x-2)(2x+1)(x-3) PC12 1.2 Practice:

Name: _____

- 1. Determine the remainder when each polynomial is divided by x 2.
- a) $x^2 7x + 11$ b) $2x^3 3x^2 6x + 8$
- 2. When $2x^3 + kx^2 3x + 2$ is divided by x 2, the remainder is 4. Determine the value of k.
- 3. Fully factor the polynomial $x^3 + 6x^2 + 3x 10$.
- 4. Which values of $a, a \in Z$, should be chosen to test for binomial factors of the form x a of the polynomial $x^4 + 3x^3 8x^2 12x + 16$?
- 5. What value of *b* will ensure x + 3 is a factor of $bx^3 2x^2 + x 6$?
- 6. Determine whether x + b is a factor of $(x + b)^5 + (x + p)^2 + (b p)^5$, $b, p \in R$.