### 1.1 Intro to Rational Numbers

$\qquad$
The set of real numbers is made up of rational and irrational numbers. A rational number is any number that can be expressed as a fraction.


Example 1: Comparing rational numbers.
Which rational number is greater, $\frac{7}{16}$ or $\frac{5}{8}$ ?
Which rational number is smaller, $\frac{5 x^{x^{8}}}{9_{48}}$ or $\frac{3^{x 9}}{8 x^{4}}$ ?

* write fractions with a common denominator

1) $\frac{10}{16} \leftarrow 5 \times 2 \times 2$

$$
\frac{40}{72}{ }^{7} \frac{27}{72}
$$

$\frac{7}{16}<\frac{5}{8}$
( $\frac{5}{8}$ is the greater number)

$$
\frac{5}{9}>\frac{3}{8}
$$

$\frac{3}{8}$ is smaller

Example 2: Identifying rational numbers between two given numbers.
Identify a fraction between -0.6 and -0.7 .
Identify a fraction between -2.4 and -2.5 .

* identify a decimal between -0.6 and -0.7

$$
-0.65=\frac{-65}{100 \div 5}=\frac{-13}{20}
$$

$$
\begin{aligned}
-2.45 & =-2 \frac{45}{100} \div 5 \\
-2 \frac{9}{20} & =-\frac{49}{20}
\end{aligned}
$$

Example 3: The square of a rational number.

Calculate the square of 2.6.

$$
2.6^{2}=2.6 \times 2.6=6.76
$$

$$
\begin{array}{r}
2.6 \\
\times 2.6 \\
\hline 156 \\
520 \\
\hline 6.76
\end{array}
$$

Example 4: The square root of a rational number.
Estimate $\sqrt{0.73} . \quad \sqrt{0.64}=0.8 \quad \sqrt{0.81}=0.9$

$\sqrt{0.73} \approx 0.86$

Calculate the square of 7.1.

$$
7.1^{2}=50.41
$$

$$
\begin{array}{r}
7.1 \\
\times 7.1 \\
\hline 7970 \\
\hline 5041
\end{array}
$$


$\sqrt{0.34} \approx 0.59$

